| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > diffifi | Unicode version | ||
| Description: Subtracting one finite set from another produces a finite set. (Contributed by Jim Kingdon, 8-Sep-2021.) | 
| Ref | Expression | 
|---|---|
| diffifi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simp2 1000 | 
. 2
 | |
| 2 | simp1 999 | 
. 2
 | |
| 3 | simp3 1001 | 
. 2
 | |
| 4 | sseq1 3206 | 
. . . . . 6
 | |
| 5 | 4 | anbi2d 464 | 
. . . . 5
 | 
| 6 | difeq2 3275 | 
. . . . . 6
 | |
| 7 | 6 | eleq1d 2265 | 
. . . . 5
 | 
| 8 | 5, 7 | imbi12d 234 | 
. . . 4
 | 
| 9 | sseq1 3206 | 
. . . . . 6
 | |
| 10 | 9 | anbi2d 464 | 
. . . . 5
 | 
| 11 | difeq2 3275 | 
. . . . . 6
 | |
| 12 | 11 | eleq1d 2265 | 
. . . . 5
 | 
| 13 | 10, 12 | imbi12d 234 | 
. . . 4
 | 
| 14 | sseq1 3206 | 
. . . . . 6
 | |
| 15 | 14 | anbi2d 464 | 
. . . . 5
 | 
| 16 | difeq2 3275 | 
. . . . . 6
 | |
| 17 | 16 | eleq1d 2265 | 
. . . . 5
 | 
| 18 | 15, 17 | imbi12d 234 | 
. . . 4
 | 
| 19 | sseq1 3206 | 
. . . . . 6
 | |
| 20 | 19 | anbi2d 464 | 
. . . . 5
 | 
| 21 | difeq2 3275 | 
. . . . . 6
 | |
| 22 | 21 | eleq1d 2265 | 
. . . . 5
 | 
| 23 | 20, 22 | imbi12d 234 | 
. . . 4
 | 
| 24 | dif0 3521 | 
. . . . . . 7
 | |
| 25 | 24 | eleq1i 2262 | 
. . . . . 6
 | 
| 26 | 25 | biimpri 133 | 
. . . . 5
 | 
| 27 | 26 | adantr 276 | 
. . . 4
 | 
| 28 | difun1 3423 | 
. . . . . 6
 | |
| 29 | simprl 529 | 
. . . . . . . 8
 | |
| 30 | simprr 531 | 
. . . . . . . . 9
 | |
| 31 | 30 | unssad 3340 | 
. . . . . . . 8
 | 
| 32 | simplr 528 | 
. . . . . . . 8
 | |
| 33 | 29, 31, 32 | mp2and 433 | 
. . . . . . 7
 | 
| 34 | vsnid 3654 | 
. . . . . . . . . 10
 | |
| 35 | simprr 531 | 
. . . . . . . . . . . 12
 | |
| 36 | 35 | unssbd 3341 | 
. . . . . . . . . . 11
 | 
| 37 | 36 | sseld 3182 | 
. . . . . . . . . 10
 | 
| 38 | 34, 37 | mpi 15 | 
. . . . . . . . 9
 | 
| 39 | 38 | adantllr 481 | 
. . . . . . . 8
 | 
| 40 | simpllr 534 | 
. . . . . . . 8
 | |
| 41 | 39, 40 | eldifd 3167 | 
. . . . . . 7
 | 
| 42 | diffisn 6954 | 
. . . . . . 7
 | |
| 43 | 33, 41, 42 | syl2anc 411 | 
. . . . . 6
 | 
| 44 | 28, 43 | eqeltrid 2283 | 
. . . . 5
 | 
| 45 | 44 | exp31 364 | 
. . . 4
 | 
| 46 | 8, 13, 18, 23, 27, 45 | findcard2s 6951 | 
. . 3
 | 
| 47 | 46 | imp 124 | 
. 2
 | 
| 48 | 1, 2, 3, 47 | syl12anc 1247 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-er 6592 df-en 6800 df-fin 6802 | 
| This theorem is referenced by: unfiin 6987 fihashssdif 10910 hashdifpr 10912 fsumlessfi 11625 hash2iun1dif1 11645 | 
| Copyright terms: Public domain | W3C validator |