ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  diffifi Unicode version

Theorem diffifi 6590
Description: Subtracting one finite set from another produces a finite set. (Contributed by Jim Kingdon, 8-Sep-2021.)
Assertion
Ref Expression
diffifi  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  ( A  \  B )  e. 
Fin )

Proof of Theorem diffifi
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 944 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  B  e.  Fin )
2 simp1 943 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  A  e.  Fin )
3 simp3 945 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  B  C_  A )
4 sseq1 3045 . . . . . 6  |-  ( w  =  (/)  ->  ( w 
C_  A  <->  (/)  C_  A
) )
54anbi2d 452 . . . . 5  |-  ( w  =  (/)  ->  ( ( A  e.  Fin  /\  w  C_  A )  <->  ( A  e.  Fin  /\  (/)  C_  A
) ) )
6 difeq2 3110 . . . . . 6  |-  ( w  =  (/)  ->  ( A 
\  w )  =  ( A  \  (/) ) )
76eleq1d 2156 . . . . 5  |-  ( w  =  (/)  ->  ( ( A  \  w )  e.  Fin  <->  ( A  \  (/) )  e.  Fin ) )
85, 7imbi12d 232 . . . 4  |-  ( w  =  (/)  ->  ( ( ( A  e.  Fin  /\  w  C_  A )  ->  ( A  \  w
)  e.  Fin )  <->  ( ( A  e.  Fin  /\  (/)  C_  A )  -> 
( A  \  (/) )  e. 
Fin ) ) )
9 sseq1 3045 . . . . . 6  |-  ( w  =  y  ->  (
w  C_  A  <->  y  C_  A ) )
109anbi2d 452 . . . . 5  |-  ( w  =  y  ->  (
( A  e.  Fin  /\  w  C_  A )  <->  ( A  e.  Fin  /\  y  C_  A ) ) )
11 difeq2 3110 . . . . . 6  |-  ( w  =  y  ->  ( A  \  w )  =  ( A  \  y
) )
1211eleq1d 2156 . . . . 5  |-  ( w  =  y  ->  (
( A  \  w
)  e.  Fin  <->  ( A  \  y )  e.  Fin ) )
1310, 12imbi12d 232 . . . 4  |-  ( w  =  y  ->  (
( ( A  e. 
Fin  /\  w  C_  A
)  ->  ( A  \  w )  e.  Fin ) 
<->  ( ( A  e. 
Fin  /\  y  C_  A )  ->  ( A  \  y )  e. 
Fin ) ) )
14 sseq1 3045 . . . . . 6  |-  ( w  =  ( y  u. 
{ z } )  ->  ( w  C_  A 
<->  ( y  u.  {
z } )  C_  A ) )
1514anbi2d 452 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( A  e.  Fin  /\  w  C_  A )  <->  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
) )
16 difeq2 3110 . . . . . 6  |-  ( w  =  ( y  u. 
{ z } )  ->  ( A  \  w )  =  ( A  \  ( y  u.  { z } ) ) )
1716eleq1d 2156 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( A 
\  w )  e. 
Fin 
<->  ( A  \  (
y  u.  { z } ) )  e. 
Fin ) )
1815, 17imbi12d 232 . . . 4  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( ( A  e.  Fin  /\  w  C_  A )  -> 
( A  \  w
)  e.  Fin )  <->  ( ( A  e.  Fin  /\  ( y  u.  {
z } )  C_  A )  ->  ( A  \  ( y  u. 
{ z } ) )  e.  Fin )
) )
19 sseq1 3045 . . . . . 6  |-  ( w  =  B  ->  (
w  C_  A  <->  B  C_  A
) )
2019anbi2d 452 . . . . 5  |-  ( w  =  B  ->  (
( A  e.  Fin  /\  w  C_  A )  <->  ( A  e.  Fin  /\  B  C_  A ) ) )
21 difeq2 3110 . . . . . 6  |-  ( w  =  B  ->  ( A  \  w )  =  ( A  \  B
) )
2221eleq1d 2156 . . . . 5  |-  ( w  =  B  ->  (
( A  \  w
)  e.  Fin  <->  ( A  \  B )  e.  Fin ) )
2320, 22imbi12d 232 . . . 4  |-  ( w  =  B  ->  (
( ( A  e. 
Fin  /\  w  C_  A
)  ->  ( A  \  w )  e.  Fin ) 
<->  ( ( A  e. 
Fin  /\  B  C_  A
)  ->  ( A  \  B )  e.  Fin ) ) )
24 dif0 3350 . . . . . . 7  |-  ( A 
\  (/) )  =  A
2524eleq1i 2153 . . . . . 6  |-  ( ( A  \  (/) )  e. 
Fin 
<->  A  e.  Fin )
2625biimpri 131 . . . . 5  |-  ( A  e.  Fin  ->  ( A  \  (/) )  e.  Fin )
2726adantr 270 . . . 4  |-  ( ( A  e.  Fin  /\  (/)  C_  A )  ->  ( A  \  (/) )  e.  Fin )
28 difun1 3257 . . . . . 6  |-  ( A 
\  ( y  u. 
{ z } ) )  =  ( ( A  \  y ) 
\  { z } )
29 simprl 498 . . . . . . . 8  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  A  e.  Fin )
30 simprr 499 . . . . . . . . 9  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  ( y  u.  { z } ) 
C_  A )
3130unssad 3175 . . . . . . . 8  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  y  C_  A )
32 simplr 497 . . . . . . . 8  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  ( ( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y )  e. 
Fin ) )
3329, 31, 32mp2and 424 . . . . . . 7  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  ( A  \  y )  e.  Fin )
34 vsnid 3471 . . . . . . . . . 10  |-  z  e. 
{ z }
35 simprr 499 . . . . . . . . . . . 12  |-  ( ( ( y  e.  Fin  /\  ( ( A  e. 
Fin  /\  y  C_  A )  ->  ( A  \  y )  e. 
Fin ) )  /\  ( A  e.  Fin  /\  ( y  u.  {
z } )  C_  A ) )  -> 
( y  u.  {
z } )  C_  A )
3635unssbd 3176 . . . . . . . . . . 11  |-  ( ( ( y  e.  Fin  /\  ( ( A  e. 
Fin  /\  y  C_  A )  ->  ( A  \  y )  e. 
Fin ) )  /\  ( A  e.  Fin  /\  ( y  u.  {
z } )  C_  A ) )  ->  { z }  C_  A )
3736sseld 3022 . . . . . . . . . 10  |-  ( ( ( y  e.  Fin  /\  ( ( A  e. 
Fin  /\  y  C_  A )  ->  ( A  \  y )  e. 
Fin ) )  /\  ( A  e.  Fin  /\  ( y  u.  {
z } )  C_  A ) )  -> 
( z  e.  {
z }  ->  z  e.  A ) )
3834, 37mpi 15 . . . . . . . . 9  |-  ( ( ( y  e.  Fin  /\  ( ( A  e. 
Fin  /\  y  C_  A )  ->  ( A  \  y )  e. 
Fin ) )  /\  ( A  e.  Fin  /\  ( y  u.  {
z } )  C_  A ) )  -> 
z  e.  A )
3938adantllr 465 . . . . . . . 8  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  z  e.  A )
40 simpllr 501 . . . . . . . 8  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  -.  z  e.  y )
4139, 40eldifd 3007 . . . . . . 7  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  z  e.  ( A  \  y
) )
42 diffisn 6589 . . . . . . 7  |-  ( ( ( A  \  y
)  e.  Fin  /\  z  e.  ( A  \  y ) )  -> 
( ( A  \ 
y )  \  {
z } )  e. 
Fin )
4333, 41, 42syl2anc 403 . . . . . 6  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  ( ( A  \  y )  \  { z } )  e.  Fin )
4428, 43syl5eqel 2174 . . . . 5  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  ( A  \  ( y  u.  {
z } ) )  e.  Fin )
4544exp31 356 . . . 4  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )  ->  ( ( A  e. 
Fin  /\  ( y  u.  { z } ) 
C_  A )  -> 
( A  \  (
y  u.  { z } ) )  e. 
Fin ) ) )
468, 13, 18, 23, 27, 45findcard2s 6586 . . 3  |-  ( B  e.  Fin  ->  (
( A  e.  Fin  /\  B  C_  A )  ->  ( A  \  B
)  e.  Fin )
)
4746imp 122 . 2  |-  ( ( B  e.  Fin  /\  ( A  e.  Fin  /\  B  C_  A )
)  ->  ( A  \  B )  e.  Fin )
481, 2, 3, 47syl12anc 1172 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  ( A  \  B )  e. 
Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    /\ w3a 924    = wceq 1289    e. wcel 1438    \ cdif 2994    u. cun 2995    C_ wss 2997   (/)c0 3284   {csn 3441   Fincfn 6437
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-if 3390  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-iord 4184  df-on 4186  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-er 6272  df-en 6438  df-fin 6440
This theorem is referenced by:  unfiin  6616  fihashssdif  10191  hashdifpr  10193  fsumlessfi  10817  hash2iun1dif1  10836
  Copyright terms: Public domain W3C validator