Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > diffifi | Unicode version |
Description: Subtracting one finite set from another produces a finite set. (Contributed by Jim Kingdon, 8-Sep-2021.) |
Ref | Expression |
---|---|
diffifi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 988 | . 2 | |
2 | simp1 987 | . 2 | |
3 | simp3 989 | . 2 | |
4 | sseq1 3165 | . . . . . 6 | |
5 | 4 | anbi2d 460 | . . . . 5 |
6 | difeq2 3234 | . . . . . 6 | |
7 | 6 | eleq1d 2235 | . . . . 5 |
8 | 5, 7 | imbi12d 233 | . . . 4 |
9 | sseq1 3165 | . . . . . 6 | |
10 | 9 | anbi2d 460 | . . . . 5 |
11 | difeq2 3234 | . . . . . 6 | |
12 | 11 | eleq1d 2235 | . . . . 5 |
13 | 10, 12 | imbi12d 233 | . . . 4 |
14 | sseq1 3165 | . . . . . 6 | |
15 | 14 | anbi2d 460 | . . . . 5 |
16 | difeq2 3234 | . . . . . 6 | |
17 | 16 | eleq1d 2235 | . . . . 5 |
18 | 15, 17 | imbi12d 233 | . . . 4 |
19 | sseq1 3165 | . . . . . 6 | |
20 | 19 | anbi2d 460 | . . . . 5 |
21 | difeq2 3234 | . . . . . 6 | |
22 | 21 | eleq1d 2235 | . . . . 5 |
23 | 20, 22 | imbi12d 233 | . . . 4 |
24 | dif0 3479 | . . . . . . 7 | |
25 | 24 | eleq1i 2232 | . . . . . 6 |
26 | 25 | biimpri 132 | . . . . 5 |
27 | 26 | adantr 274 | . . . 4 |
28 | difun1 3382 | . . . . . 6 | |
29 | simprl 521 | . . . . . . . 8 | |
30 | simprr 522 | . . . . . . . . 9 | |
31 | 30 | unssad 3299 | . . . . . . . 8 |
32 | simplr 520 | . . . . . . . 8 | |
33 | 29, 31, 32 | mp2and 430 | . . . . . . 7 |
34 | vsnid 3608 | . . . . . . . . . 10 | |
35 | simprr 522 | . . . . . . . . . . . 12 | |
36 | 35 | unssbd 3300 | . . . . . . . . . . 11 |
37 | 36 | sseld 3141 | . . . . . . . . . 10 |
38 | 34, 37 | mpi 15 | . . . . . . . . 9 |
39 | 38 | adantllr 473 | . . . . . . . 8 |
40 | simpllr 524 | . . . . . . . 8 | |
41 | 39, 40 | eldifd 3126 | . . . . . . 7 |
42 | diffisn 6859 | . . . . . . 7 | |
43 | 33, 41, 42 | syl2anc 409 | . . . . . 6 |
44 | 28, 43 | eqeltrid 2253 | . . . . 5 |
45 | 44 | exp31 362 | . . . 4 |
46 | 8, 13, 18, 23, 27, 45 | findcard2s 6856 | . . 3 |
47 | 46 | imp 123 | . 2 |
48 | 1, 2, 3, 47 | syl12anc 1226 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 cdif 3113 cun 3114 wss 3116 c0 3409 csn 3576 cfn 6706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-er 6501 df-en 6707 df-fin 6709 |
This theorem is referenced by: unfiin 6891 fihashssdif 10731 hashdifpr 10733 fsumlessfi 11401 hash2iun1dif1 11421 |
Copyright terms: Public domain | W3C validator |