ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  diffifi Unicode version

Theorem diffifi 6991
Description: Subtracting one finite set from another produces a finite set. (Contributed by Jim Kingdon, 8-Sep-2021.)
Assertion
Ref Expression
diffifi  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  ( A  \  B )  e. 
Fin )

Proof of Theorem diffifi
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1001 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  B  e.  Fin )
2 simp1 1000 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  A  e.  Fin )
3 simp3 1002 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  B  C_  A )
4 sseq1 3216 . . . . . 6  |-  ( w  =  (/)  ->  ( w 
C_  A  <->  (/)  C_  A
) )
54anbi2d 464 . . . . 5  |-  ( w  =  (/)  ->  ( ( A  e.  Fin  /\  w  C_  A )  <->  ( A  e.  Fin  /\  (/)  C_  A
) ) )
6 difeq2 3285 . . . . . 6  |-  ( w  =  (/)  ->  ( A 
\  w )  =  ( A  \  (/) ) )
76eleq1d 2274 . . . . 5  |-  ( w  =  (/)  ->  ( ( A  \  w )  e.  Fin  <->  ( A  \  (/) )  e.  Fin ) )
85, 7imbi12d 234 . . . 4  |-  ( w  =  (/)  ->  ( ( ( A  e.  Fin  /\  w  C_  A )  ->  ( A  \  w
)  e.  Fin )  <->  ( ( A  e.  Fin  /\  (/)  C_  A )  -> 
( A  \  (/) )  e. 
Fin ) ) )
9 sseq1 3216 . . . . . 6  |-  ( w  =  y  ->  (
w  C_  A  <->  y  C_  A ) )
109anbi2d 464 . . . . 5  |-  ( w  =  y  ->  (
( A  e.  Fin  /\  w  C_  A )  <->  ( A  e.  Fin  /\  y  C_  A ) ) )
11 difeq2 3285 . . . . . 6  |-  ( w  =  y  ->  ( A  \  w )  =  ( A  \  y
) )
1211eleq1d 2274 . . . . 5  |-  ( w  =  y  ->  (
( A  \  w
)  e.  Fin  <->  ( A  \  y )  e.  Fin ) )
1310, 12imbi12d 234 . . . 4  |-  ( w  =  y  ->  (
( ( A  e. 
Fin  /\  w  C_  A
)  ->  ( A  \  w )  e.  Fin ) 
<->  ( ( A  e. 
Fin  /\  y  C_  A )  ->  ( A  \  y )  e. 
Fin ) ) )
14 sseq1 3216 . . . . . 6  |-  ( w  =  ( y  u. 
{ z } )  ->  ( w  C_  A 
<->  ( y  u.  {
z } )  C_  A ) )
1514anbi2d 464 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( A  e.  Fin  /\  w  C_  A )  <->  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
) )
16 difeq2 3285 . . . . . 6  |-  ( w  =  ( y  u. 
{ z } )  ->  ( A  \  w )  =  ( A  \  ( y  u.  { z } ) ) )
1716eleq1d 2274 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( A 
\  w )  e. 
Fin 
<->  ( A  \  (
y  u.  { z } ) )  e. 
Fin ) )
1815, 17imbi12d 234 . . . 4  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( ( A  e.  Fin  /\  w  C_  A )  -> 
( A  \  w
)  e.  Fin )  <->  ( ( A  e.  Fin  /\  ( y  u.  {
z } )  C_  A )  ->  ( A  \  ( y  u. 
{ z } ) )  e.  Fin )
) )
19 sseq1 3216 . . . . . 6  |-  ( w  =  B  ->  (
w  C_  A  <->  B  C_  A
) )
2019anbi2d 464 . . . . 5  |-  ( w  =  B  ->  (
( A  e.  Fin  /\  w  C_  A )  <->  ( A  e.  Fin  /\  B  C_  A ) ) )
21 difeq2 3285 . . . . . 6  |-  ( w  =  B  ->  ( A  \  w )  =  ( A  \  B
) )
2221eleq1d 2274 . . . . 5  |-  ( w  =  B  ->  (
( A  \  w
)  e.  Fin  <->  ( A  \  B )  e.  Fin ) )
2320, 22imbi12d 234 . . . 4  |-  ( w  =  B  ->  (
( ( A  e. 
Fin  /\  w  C_  A
)  ->  ( A  \  w )  e.  Fin ) 
<->  ( ( A  e. 
Fin  /\  B  C_  A
)  ->  ( A  \  B )  e.  Fin ) ) )
24 dif0 3531 . . . . . . 7  |-  ( A 
\  (/) )  =  A
2524eleq1i 2271 . . . . . 6  |-  ( ( A  \  (/) )  e. 
Fin 
<->  A  e.  Fin )
2625biimpri 133 . . . . 5  |-  ( A  e.  Fin  ->  ( A  \  (/) )  e.  Fin )
2726adantr 276 . . . 4  |-  ( ( A  e.  Fin  /\  (/)  C_  A )  ->  ( A  \  (/) )  e.  Fin )
28 difun1 3433 . . . . . 6  |-  ( A 
\  ( y  u. 
{ z } ) )  =  ( ( A  \  y ) 
\  { z } )
29 simprl 529 . . . . . . . 8  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  A  e.  Fin )
30 simprr 531 . . . . . . . . 9  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  ( y  u.  { z } ) 
C_  A )
3130unssad 3350 . . . . . . . 8  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  y  C_  A )
32 simplr 528 . . . . . . . 8  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  ( ( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y )  e. 
Fin ) )
3329, 31, 32mp2and 433 . . . . . . 7  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  ( A  \  y )  e.  Fin )
34 vsnid 3665 . . . . . . . . . 10  |-  z  e. 
{ z }
35 simprr 531 . . . . . . . . . . . 12  |-  ( ( ( y  e.  Fin  /\  ( ( A  e. 
Fin  /\  y  C_  A )  ->  ( A  \  y )  e. 
Fin ) )  /\  ( A  e.  Fin  /\  ( y  u.  {
z } )  C_  A ) )  -> 
( y  u.  {
z } )  C_  A )
3635unssbd 3351 . . . . . . . . . . 11  |-  ( ( ( y  e.  Fin  /\  ( ( A  e. 
Fin  /\  y  C_  A )  ->  ( A  \  y )  e. 
Fin ) )  /\  ( A  e.  Fin  /\  ( y  u.  {
z } )  C_  A ) )  ->  { z }  C_  A )
3736sseld 3192 . . . . . . . . . 10  |-  ( ( ( y  e.  Fin  /\  ( ( A  e. 
Fin  /\  y  C_  A )  ->  ( A  \  y )  e. 
Fin ) )  /\  ( A  e.  Fin  /\  ( y  u.  {
z } )  C_  A ) )  -> 
( z  e.  {
z }  ->  z  e.  A ) )
3834, 37mpi 15 . . . . . . . . 9  |-  ( ( ( y  e.  Fin  /\  ( ( A  e. 
Fin  /\  y  C_  A )  ->  ( A  \  y )  e. 
Fin ) )  /\  ( A  e.  Fin  /\  ( y  u.  {
z } )  C_  A ) )  -> 
z  e.  A )
3938adantllr 481 . . . . . . . 8  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  z  e.  A )
40 simpllr 534 . . . . . . . 8  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  -.  z  e.  y )
4139, 40eldifd 3176 . . . . . . 7  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  z  e.  ( A  \  y
) )
42 diffisn 6990 . . . . . . 7  |-  ( ( ( A  \  y
)  e.  Fin  /\  z  e.  ( A  \  y ) )  -> 
( ( A  \ 
y )  \  {
z } )  e. 
Fin )
4333, 41, 42syl2anc 411 . . . . . 6  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  ( ( A  \  y )  \  { z } )  e.  Fin )
4428, 43eqeltrid 2292 . . . . 5  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  ( A  \  ( y  u.  {
z } ) )  e.  Fin )
4544exp31 364 . . . 4  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )  ->  ( ( A  e. 
Fin  /\  ( y  u.  { z } ) 
C_  A )  -> 
( A  \  (
y  u.  { z } ) )  e. 
Fin ) ) )
468, 13, 18, 23, 27, 45findcard2s 6987 . . 3  |-  ( B  e.  Fin  ->  (
( A  e.  Fin  /\  B  C_  A )  ->  ( A  \  B
)  e.  Fin )
)
4746imp 124 . 2  |-  ( ( B  e.  Fin  /\  ( A  e.  Fin  /\  B  C_  A )
)  ->  ( A  \  B )  e.  Fin )
481, 2, 3, 47syl12anc 1248 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  ( A  \  B )  e. 
Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176    \ cdif 3163    u. cun 3164    C_ wss 3166   (/)c0 3460   {csn 3633   Fincfn 6827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-er 6620  df-en 6828  df-fin 6830
This theorem is referenced by:  unfiin  7023  fihashssdif  10963  hashdifpr  10965  fsumlessfi  11771  hash2iun1dif1  11791
  Copyright terms: Public domain W3C validator