ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  diffifi Unicode version

Theorem diffifi 7052
Description: Subtracting one finite set from another produces a finite set. (Contributed by Jim Kingdon, 8-Sep-2021.)
Assertion
Ref Expression
diffifi  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  ( A  \  B )  e. 
Fin )

Proof of Theorem diffifi
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1022 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  B  e.  Fin )
2 simp1 1021 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  A  e.  Fin )
3 simp3 1023 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  B  C_  A )
4 sseq1 3247 . . . . . 6  |-  ( w  =  (/)  ->  ( w 
C_  A  <->  (/)  C_  A
) )
54anbi2d 464 . . . . 5  |-  ( w  =  (/)  ->  ( ( A  e.  Fin  /\  w  C_  A )  <->  ( A  e.  Fin  /\  (/)  C_  A
) ) )
6 difeq2 3316 . . . . . 6  |-  ( w  =  (/)  ->  ( A 
\  w )  =  ( A  \  (/) ) )
76eleq1d 2298 . . . . 5  |-  ( w  =  (/)  ->  ( ( A  \  w )  e.  Fin  <->  ( A  \  (/) )  e.  Fin ) )
85, 7imbi12d 234 . . . 4  |-  ( w  =  (/)  ->  ( ( ( A  e.  Fin  /\  w  C_  A )  ->  ( A  \  w
)  e.  Fin )  <->  ( ( A  e.  Fin  /\  (/)  C_  A )  -> 
( A  \  (/) )  e. 
Fin ) ) )
9 sseq1 3247 . . . . . 6  |-  ( w  =  y  ->  (
w  C_  A  <->  y  C_  A ) )
109anbi2d 464 . . . . 5  |-  ( w  =  y  ->  (
( A  e.  Fin  /\  w  C_  A )  <->  ( A  e.  Fin  /\  y  C_  A ) ) )
11 difeq2 3316 . . . . . 6  |-  ( w  =  y  ->  ( A  \  w )  =  ( A  \  y
) )
1211eleq1d 2298 . . . . 5  |-  ( w  =  y  ->  (
( A  \  w
)  e.  Fin  <->  ( A  \  y )  e.  Fin ) )
1310, 12imbi12d 234 . . . 4  |-  ( w  =  y  ->  (
( ( A  e. 
Fin  /\  w  C_  A
)  ->  ( A  \  w )  e.  Fin ) 
<->  ( ( A  e. 
Fin  /\  y  C_  A )  ->  ( A  \  y )  e. 
Fin ) ) )
14 sseq1 3247 . . . . . 6  |-  ( w  =  ( y  u. 
{ z } )  ->  ( w  C_  A 
<->  ( y  u.  {
z } )  C_  A ) )
1514anbi2d 464 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( A  e.  Fin  /\  w  C_  A )  <->  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
) )
16 difeq2 3316 . . . . . 6  |-  ( w  =  ( y  u. 
{ z } )  ->  ( A  \  w )  =  ( A  \  ( y  u.  { z } ) ) )
1716eleq1d 2298 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( A 
\  w )  e. 
Fin 
<->  ( A  \  (
y  u.  { z } ) )  e. 
Fin ) )
1815, 17imbi12d 234 . . . 4  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( ( A  e.  Fin  /\  w  C_  A )  -> 
( A  \  w
)  e.  Fin )  <->  ( ( A  e.  Fin  /\  ( y  u.  {
z } )  C_  A )  ->  ( A  \  ( y  u. 
{ z } ) )  e.  Fin )
) )
19 sseq1 3247 . . . . . 6  |-  ( w  =  B  ->  (
w  C_  A  <->  B  C_  A
) )
2019anbi2d 464 . . . . 5  |-  ( w  =  B  ->  (
( A  e.  Fin  /\  w  C_  A )  <->  ( A  e.  Fin  /\  B  C_  A ) ) )
21 difeq2 3316 . . . . . 6  |-  ( w  =  B  ->  ( A  \  w )  =  ( A  \  B
) )
2221eleq1d 2298 . . . . 5  |-  ( w  =  B  ->  (
( A  \  w
)  e.  Fin  <->  ( A  \  B )  e.  Fin ) )
2320, 22imbi12d 234 . . . 4  |-  ( w  =  B  ->  (
( ( A  e. 
Fin  /\  w  C_  A
)  ->  ( A  \  w )  e.  Fin ) 
<->  ( ( A  e. 
Fin  /\  B  C_  A
)  ->  ( A  \  B )  e.  Fin ) ) )
24 dif0 3562 . . . . . . 7  |-  ( A 
\  (/) )  =  A
2524eleq1i 2295 . . . . . 6  |-  ( ( A  \  (/) )  e. 
Fin 
<->  A  e.  Fin )
2625biimpri 133 . . . . 5  |-  ( A  e.  Fin  ->  ( A  \  (/) )  e.  Fin )
2726adantr 276 . . . 4  |-  ( ( A  e.  Fin  /\  (/)  C_  A )  ->  ( A  \  (/) )  e.  Fin )
28 difun1 3464 . . . . . 6  |-  ( A 
\  ( y  u. 
{ z } ) )  =  ( ( A  \  y ) 
\  { z } )
29 simprl 529 . . . . . . . 8  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  A  e.  Fin )
30 simprr 531 . . . . . . . . 9  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  ( y  u.  { z } ) 
C_  A )
3130unssad 3381 . . . . . . . 8  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  y  C_  A )
32 simplr 528 . . . . . . . 8  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  ( ( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y )  e. 
Fin ) )
3329, 31, 32mp2and 433 . . . . . . 7  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  ( A  \  y )  e.  Fin )
34 vsnid 3698 . . . . . . . . . 10  |-  z  e. 
{ z }
35 simprr 531 . . . . . . . . . . . 12  |-  ( ( ( y  e.  Fin  /\  ( ( A  e. 
Fin  /\  y  C_  A )  ->  ( A  \  y )  e. 
Fin ) )  /\  ( A  e.  Fin  /\  ( y  u.  {
z } )  C_  A ) )  -> 
( y  u.  {
z } )  C_  A )
3635unssbd 3382 . . . . . . . . . . 11  |-  ( ( ( y  e.  Fin  /\  ( ( A  e. 
Fin  /\  y  C_  A )  ->  ( A  \  y )  e. 
Fin ) )  /\  ( A  e.  Fin  /\  ( y  u.  {
z } )  C_  A ) )  ->  { z }  C_  A )
3736sseld 3223 . . . . . . . . . 10  |-  ( ( ( y  e.  Fin  /\  ( ( A  e. 
Fin  /\  y  C_  A )  ->  ( A  \  y )  e. 
Fin ) )  /\  ( A  e.  Fin  /\  ( y  u.  {
z } )  C_  A ) )  -> 
( z  e.  {
z }  ->  z  e.  A ) )
3834, 37mpi 15 . . . . . . . . 9  |-  ( ( ( y  e.  Fin  /\  ( ( A  e. 
Fin  /\  y  C_  A )  ->  ( A  \  y )  e. 
Fin ) )  /\  ( A  e.  Fin  /\  ( y  u.  {
z } )  C_  A ) )  -> 
z  e.  A )
3938adantllr 481 . . . . . . . 8  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  z  e.  A )
40 simpllr 534 . . . . . . . 8  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  -.  z  e.  y )
4139, 40eldifd 3207 . . . . . . 7  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  z  e.  ( A  \  y
) )
42 diffisn 7051 . . . . . . 7  |-  ( ( ( A  \  y
)  e.  Fin  /\  z  e.  ( A  \  y ) )  -> 
( ( A  \ 
y )  \  {
z } )  e. 
Fin )
4333, 41, 42syl2anc 411 . . . . . 6  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  ( ( A  \  y )  \  { z } )  e.  Fin )
4428, 43eqeltrid 2316 . . . . 5  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  ( A  \  ( y  u.  {
z } ) )  e.  Fin )
4544exp31 364 . . . 4  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )  ->  ( ( A  e. 
Fin  /\  ( y  u.  { z } ) 
C_  A )  -> 
( A  \  (
y  u.  { z } ) )  e. 
Fin ) ) )
468, 13, 18, 23, 27, 45findcard2s 7048 . . 3  |-  ( B  e.  Fin  ->  (
( A  e.  Fin  /\  B  C_  A )  ->  ( A  \  B
)  e.  Fin )
)
4746imp 124 . 2  |-  ( ( B  e.  Fin  /\  ( A  e.  Fin  /\  B  C_  A )
)  ->  ( A  \  B )  e.  Fin )
481, 2, 3, 47syl12anc 1269 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  ( A  \  B )  e. 
Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200    \ cdif 3194    u. cun 3195    C_ wss 3197   (/)c0 3491   {csn 3666   Fincfn 6885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-er 6678  df-en 6886  df-fin 6888
This theorem is referenced by:  unfiin  7084  fihashssdif  11035  hashdifpr  11037  fsumlessfi  11966  hash2iun1dif1  11986
  Copyright terms: Public domain W3C validator