ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  diffifi Unicode version

Theorem diffifi 6754
Description: Subtracting one finite set from another produces a finite set. (Contributed by Jim Kingdon, 8-Sep-2021.)
Assertion
Ref Expression
diffifi  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  ( A  \  B )  e. 
Fin )

Proof of Theorem diffifi
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 965 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  B  e.  Fin )
2 simp1 964 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  A  e.  Fin )
3 simp3 966 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  B  C_  A )
4 sseq1 3088 . . . . . 6  |-  ( w  =  (/)  ->  ( w 
C_  A  <->  (/)  C_  A
) )
54anbi2d 457 . . . . 5  |-  ( w  =  (/)  ->  ( ( A  e.  Fin  /\  w  C_  A )  <->  ( A  e.  Fin  /\  (/)  C_  A
) ) )
6 difeq2 3156 . . . . . 6  |-  ( w  =  (/)  ->  ( A 
\  w )  =  ( A  \  (/) ) )
76eleq1d 2184 . . . . 5  |-  ( w  =  (/)  ->  ( ( A  \  w )  e.  Fin  <->  ( A  \  (/) )  e.  Fin ) )
85, 7imbi12d 233 . . . 4  |-  ( w  =  (/)  ->  ( ( ( A  e.  Fin  /\  w  C_  A )  ->  ( A  \  w
)  e.  Fin )  <->  ( ( A  e.  Fin  /\  (/)  C_  A )  -> 
( A  \  (/) )  e. 
Fin ) ) )
9 sseq1 3088 . . . . . 6  |-  ( w  =  y  ->  (
w  C_  A  <->  y  C_  A ) )
109anbi2d 457 . . . . 5  |-  ( w  =  y  ->  (
( A  e.  Fin  /\  w  C_  A )  <->  ( A  e.  Fin  /\  y  C_  A ) ) )
11 difeq2 3156 . . . . . 6  |-  ( w  =  y  ->  ( A  \  w )  =  ( A  \  y
) )
1211eleq1d 2184 . . . . 5  |-  ( w  =  y  ->  (
( A  \  w
)  e.  Fin  <->  ( A  \  y )  e.  Fin ) )
1310, 12imbi12d 233 . . . 4  |-  ( w  =  y  ->  (
( ( A  e. 
Fin  /\  w  C_  A
)  ->  ( A  \  w )  e.  Fin ) 
<->  ( ( A  e. 
Fin  /\  y  C_  A )  ->  ( A  \  y )  e. 
Fin ) ) )
14 sseq1 3088 . . . . . 6  |-  ( w  =  ( y  u. 
{ z } )  ->  ( w  C_  A 
<->  ( y  u.  {
z } )  C_  A ) )
1514anbi2d 457 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( A  e.  Fin  /\  w  C_  A )  <->  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
) )
16 difeq2 3156 . . . . . 6  |-  ( w  =  ( y  u. 
{ z } )  ->  ( A  \  w )  =  ( A  \  ( y  u.  { z } ) ) )
1716eleq1d 2184 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( A 
\  w )  e. 
Fin 
<->  ( A  \  (
y  u.  { z } ) )  e. 
Fin ) )
1815, 17imbi12d 233 . . . 4  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( ( A  e.  Fin  /\  w  C_  A )  -> 
( A  \  w
)  e.  Fin )  <->  ( ( A  e.  Fin  /\  ( y  u.  {
z } )  C_  A )  ->  ( A  \  ( y  u. 
{ z } ) )  e.  Fin )
) )
19 sseq1 3088 . . . . . 6  |-  ( w  =  B  ->  (
w  C_  A  <->  B  C_  A
) )
2019anbi2d 457 . . . . 5  |-  ( w  =  B  ->  (
( A  e.  Fin  /\  w  C_  A )  <->  ( A  e.  Fin  /\  B  C_  A ) ) )
21 difeq2 3156 . . . . . 6  |-  ( w  =  B  ->  ( A  \  w )  =  ( A  \  B
) )
2221eleq1d 2184 . . . . 5  |-  ( w  =  B  ->  (
( A  \  w
)  e.  Fin  <->  ( A  \  B )  e.  Fin ) )
2320, 22imbi12d 233 . . . 4  |-  ( w  =  B  ->  (
( ( A  e. 
Fin  /\  w  C_  A
)  ->  ( A  \  w )  e.  Fin ) 
<->  ( ( A  e. 
Fin  /\  B  C_  A
)  ->  ( A  \  B )  e.  Fin ) ) )
24 dif0 3401 . . . . . . 7  |-  ( A 
\  (/) )  =  A
2524eleq1i 2181 . . . . . 6  |-  ( ( A  \  (/) )  e. 
Fin 
<->  A  e.  Fin )
2625biimpri 132 . . . . 5  |-  ( A  e.  Fin  ->  ( A  \  (/) )  e.  Fin )
2726adantr 272 . . . 4  |-  ( ( A  e.  Fin  /\  (/)  C_  A )  ->  ( A  \  (/) )  e.  Fin )
28 difun1 3304 . . . . . 6  |-  ( A 
\  ( y  u. 
{ z } ) )  =  ( ( A  \  y ) 
\  { z } )
29 simprl 503 . . . . . . . 8  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  A  e.  Fin )
30 simprr 504 . . . . . . . . 9  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  ( y  u.  { z } ) 
C_  A )
3130unssad 3221 . . . . . . . 8  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  y  C_  A )
32 simplr 502 . . . . . . . 8  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  ( ( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y )  e. 
Fin ) )
3329, 31, 32mp2and 427 . . . . . . 7  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  ( A  \  y )  e.  Fin )
34 vsnid 3525 . . . . . . . . . 10  |-  z  e. 
{ z }
35 simprr 504 . . . . . . . . . . . 12  |-  ( ( ( y  e.  Fin  /\  ( ( A  e. 
Fin  /\  y  C_  A )  ->  ( A  \  y )  e. 
Fin ) )  /\  ( A  e.  Fin  /\  ( y  u.  {
z } )  C_  A ) )  -> 
( y  u.  {
z } )  C_  A )
3635unssbd 3222 . . . . . . . . . . 11  |-  ( ( ( y  e.  Fin  /\  ( ( A  e. 
Fin  /\  y  C_  A )  ->  ( A  \  y )  e. 
Fin ) )  /\  ( A  e.  Fin  /\  ( y  u.  {
z } )  C_  A ) )  ->  { z }  C_  A )
3736sseld 3064 . . . . . . . . . 10  |-  ( ( ( y  e.  Fin  /\  ( ( A  e. 
Fin  /\  y  C_  A )  ->  ( A  \  y )  e. 
Fin ) )  /\  ( A  e.  Fin  /\  ( y  u.  {
z } )  C_  A ) )  -> 
( z  e.  {
z }  ->  z  e.  A ) )
3834, 37mpi 15 . . . . . . . . 9  |-  ( ( ( y  e.  Fin  /\  ( ( A  e. 
Fin  /\  y  C_  A )  ->  ( A  \  y )  e. 
Fin ) )  /\  ( A  e.  Fin  /\  ( y  u.  {
z } )  C_  A ) )  -> 
z  e.  A )
3938adantllr 470 . . . . . . . 8  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  z  e.  A )
40 simpllr 506 . . . . . . . 8  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  -.  z  e.  y )
4139, 40eldifd 3049 . . . . . . 7  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  z  e.  ( A  \  y
) )
42 diffisn 6753 . . . . . . 7  |-  ( ( ( A  \  y
)  e.  Fin  /\  z  e.  ( A  \  y ) )  -> 
( ( A  \ 
y )  \  {
z } )  e. 
Fin )
4333, 41, 42syl2anc 406 . . . . . 6  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  ( ( A  \  y )  \  { z } )  e.  Fin )
4428, 43eqeltrid 2202 . . . . 5  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  ( A  \  ( y  u.  {
z } ) )  e.  Fin )
4544exp31 359 . . . 4  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )  ->  ( ( A  e. 
Fin  /\  ( y  u.  { z } ) 
C_  A )  -> 
( A  \  (
y  u.  { z } ) )  e. 
Fin ) ) )
468, 13, 18, 23, 27, 45findcard2s 6750 . . 3  |-  ( B  e.  Fin  ->  (
( A  e.  Fin  /\  B  C_  A )  ->  ( A  \  B
)  e.  Fin )
)
4746imp 123 . 2  |-  ( ( B  e.  Fin  /\  ( A  e.  Fin  /\  B  C_  A )
)  ->  ( A  \  B )  e.  Fin )
481, 2, 3, 47syl12anc 1197 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  ( A  \  B )  e. 
Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    /\ w3a 945    = wceq 1314    e. wcel 1463    \ cdif 3036    u. cun 3037    C_ wss 3039   (/)c0 3331   {csn 3495   Fincfn 6600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-iord 4256  df-on 4258  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-er 6395  df-en 6601  df-fin 6603
This theorem is referenced by:  unfiin  6780  fihashssdif  10515  hashdifpr  10517  fsumlessfi  11180  hash2iun1dif1  11200
  Copyright terms: Public domain W3C validator