ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  diffifi Unicode version

Theorem diffifi 6860
Description: Subtracting one finite set from another produces a finite set. (Contributed by Jim Kingdon, 8-Sep-2021.)
Assertion
Ref Expression
diffifi  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  ( A  \  B )  e. 
Fin )

Proof of Theorem diffifi
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 988 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  B  e.  Fin )
2 simp1 987 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  A  e.  Fin )
3 simp3 989 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  B  C_  A )
4 sseq1 3165 . . . . . 6  |-  ( w  =  (/)  ->  ( w 
C_  A  <->  (/)  C_  A
) )
54anbi2d 460 . . . . 5  |-  ( w  =  (/)  ->  ( ( A  e.  Fin  /\  w  C_  A )  <->  ( A  e.  Fin  /\  (/)  C_  A
) ) )
6 difeq2 3234 . . . . . 6  |-  ( w  =  (/)  ->  ( A 
\  w )  =  ( A  \  (/) ) )
76eleq1d 2235 . . . . 5  |-  ( w  =  (/)  ->  ( ( A  \  w )  e.  Fin  <->  ( A  \  (/) )  e.  Fin ) )
85, 7imbi12d 233 . . . 4  |-  ( w  =  (/)  ->  ( ( ( A  e.  Fin  /\  w  C_  A )  ->  ( A  \  w
)  e.  Fin )  <->  ( ( A  e.  Fin  /\  (/)  C_  A )  -> 
( A  \  (/) )  e. 
Fin ) ) )
9 sseq1 3165 . . . . . 6  |-  ( w  =  y  ->  (
w  C_  A  <->  y  C_  A ) )
109anbi2d 460 . . . . 5  |-  ( w  =  y  ->  (
( A  e.  Fin  /\  w  C_  A )  <->  ( A  e.  Fin  /\  y  C_  A ) ) )
11 difeq2 3234 . . . . . 6  |-  ( w  =  y  ->  ( A  \  w )  =  ( A  \  y
) )
1211eleq1d 2235 . . . . 5  |-  ( w  =  y  ->  (
( A  \  w
)  e.  Fin  <->  ( A  \  y )  e.  Fin ) )
1310, 12imbi12d 233 . . . 4  |-  ( w  =  y  ->  (
( ( A  e. 
Fin  /\  w  C_  A
)  ->  ( A  \  w )  e.  Fin ) 
<->  ( ( A  e. 
Fin  /\  y  C_  A )  ->  ( A  \  y )  e. 
Fin ) ) )
14 sseq1 3165 . . . . . 6  |-  ( w  =  ( y  u. 
{ z } )  ->  ( w  C_  A 
<->  ( y  u.  {
z } )  C_  A ) )
1514anbi2d 460 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( A  e.  Fin  /\  w  C_  A )  <->  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
) )
16 difeq2 3234 . . . . . 6  |-  ( w  =  ( y  u. 
{ z } )  ->  ( A  \  w )  =  ( A  \  ( y  u.  { z } ) ) )
1716eleq1d 2235 . . . . 5  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( A 
\  w )  e. 
Fin 
<->  ( A  \  (
y  u.  { z } ) )  e. 
Fin ) )
1815, 17imbi12d 233 . . . 4  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( ( A  e.  Fin  /\  w  C_  A )  -> 
( A  \  w
)  e.  Fin )  <->  ( ( A  e.  Fin  /\  ( y  u.  {
z } )  C_  A )  ->  ( A  \  ( y  u. 
{ z } ) )  e.  Fin )
) )
19 sseq1 3165 . . . . . 6  |-  ( w  =  B  ->  (
w  C_  A  <->  B  C_  A
) )
2019anbi2d 460 . . . . 5  |-  ( w  =  B  ->  (
( A  e.  Fin  /\  w  C_  A )  <->  ( A  e.  Fin  /\  B  C_  A ) ) )
21 difeq2 3234 . . . . . 6  |-  ( w  =  B  ->  ( A  \  w )  =  ( A  \  B
) )
2221eleq1d 2235 . . . . 5  |-  ( w  =  B  ->  (
( A  \  w
)  e.  Fin  <->  ( A  \  B )  e.  Fin ) )
2320, 22imbi12d 233 . . . 4  |-  ( w  =  B  ->  (
( ( A  e. 
Fin  /\  w  C_  A
)  ->  ( A  \  w )  e.  Fin ) 
<->  ( ( A  e. 
Fin  /\  B  C_  A
)  ->  ( A  \  B )  e.  Fin ) ) )
24 dif0 3479 . . . . . . 7  |-  ( A 
\  (/) )  =  A
2524eleq1i 2232 . . . . . 6  |-  ( ( A  \  (/) )  e. 
Fin 
<->  A  e.  Fin )
2625biimpri 132 . . . . 5  |-  ( A  e.  Fin  ->  ( A  \  (/) )  e.  Fin )
2726adantr 274 . . . 4  |-  ( ( A  e.  Fin  /\  (/)  C_  A )  ->  ( A  \  (/) )  e.  Fin )
28 difun1 3382 . . . . . 6  |-  ( A 
\  ( y  u. 
{ z } ) )  =  ( ( A  \  y ) 
\  { z } )
29 simprl 521 . . . . . . . 8  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  A  e.  Fin )
30 simprr 522 . . . . . . . . 9  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  ( y  u.  { z } ) 
C_  A )
3130unssad 3299 . . . . . . . 8  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  y  C_  A )
32 simplr 520 . . . . . . . 8  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  ( ( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y )  e. 
Fin ) )
3329, 31, 32mp2and 430 . . . . . . 7  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  ( A  \  y )  e.  Fin )
34 vsnid 3608 . . . . . . . . . 10  |-  z  e. 
{ z }
35 simprr 522 . . . . . . . . . . . 12  |-  ( ( ( y  e.  Fin  /\  ( ( A  e. 
Fin  /\  y  C_  A )  ->  ( A  \  y )  e. 
Fin ) )  /\  ( A  e.  Fin  /\  ( y  u.  {
z } )  C_  A ) )  -> 
( y  u.  {
z } )  C_  A )
3635unssbd 3300 . . . . . . . . . . 11  |-  ( ( ( y  e.  Fin  /\  ( ( A  e. 
Fin  /\  y  C_  A )  ->  ( A  \  y )  e. 
Fin ) )  /\  ( A  e.  Fin  /\  ( y  u.  {
z } )  C_  A ) )  ->  { z }  C_  A )
3736sseld 3141 . . . . . . . . . 10  |-  ( ( ( y  e.  Fin  /\  ( ( A  e. 
Fin  /\  y  C_  A )  ->  ( A  \  y )  e. 
Fin ) )  /\  ( A  e.  Fin  /\  ( y  u.  {
z } )  C_  A ) )  -> 
( z  e.  {
z }  ->  z  e.  A ) )
3834, 37mpi 15 . . . . . . . . 9  |-  ( ( ( y  e.  Fin  /\  ( ( A  e. 
Fin  /\  y  C_  A )  ->  ( A  \  y )  e. 
Fin ) )  /\  ( A  e.  Fin  /\  ( y  u.  {
z } )  C_  A ) )  -> 
z  e.  A )
3938adantllr 473 . . . . . . . 8  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  z  e.  A )
40 simpllr 524 . . . . . . . 8  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  -.  z  e.  y )
4139, 40eldifd 3126 . . . . . . 7  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  z  e.  ( A  \  y
) )
42 diffisn 6859 . . . . . . 7  |-  ( ( ( A  \  y
)  e.  Fin  /\  z  e.  ( A  \  y ) )  -> 
( ( A  \ 
y )  \  {
z } )  e. 
Fin )
4333, 41, 42syl2anc 409 . . . . . 6  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  ( ( A  \  y )  \  { z } )  e.  Fin )
4428, 43eqeltrid 2253 . . . . 5  |-  ( ( ( ( y  e. 
Fin  /\  -.  z  e.  y )  /\  (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )
)  /\  ( A  e.  Fin  /\  ( y  u.  { z } )  C_  A )
)  ->  ( A  \  ( y  u.  {
z } ) )  e.  Fin )
4544exp31 362 . . . 4  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( (
( A  e.  Fin  /\  y  C_  A )  ->  ( A  \  y
)  e.  Fin )  ->  ( ( A  e. 
Fin  /\  ( y  u.  { z } ) 
C_  A )  -> 
( A  \  (
y  u.  { z } ) )  e. 
Fin ) ) )
468, 13, 18, 23, 27, 45findcard2s 6856 . . 3  |-  ( B  e.  Fin  ->  (
( A  e.  Fin  /\  B  C_  A )  ->  ( A  \  B
)  e.  Fin )
)
4746imp 123 . 2  |-  ( ( B  e.  Fin  /\  ( A  e.  Fin  /\  B  C_  A )
)  ->  ( A  \  B )  e.  Fin )
481, 2, 3, 47syl12anc 1226 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  ( A  \  B )  e. 
Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    /\ w3a 968    = wceq 1343    e. wcel 2136    \ cdif 3113    u. cun 3114    C_ wss 3116   (/)c0 3409   {csn 3576   Fincfn 6706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-er 6501  df-en 6707  df-fin 6709
This theorem is referenced by:  unfiin  6891  fihashssdif  10731  hashdifpr  10733  fsumlessfi  11401  hash2iun1dif1  11421
  Copyright terms: Public domain W3C validator