| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > diffifi | Unicode version | ||
| Description: Subtracting one finite set from another produces a finite set. (Contributed by Jim Kingdon, 8-Sep-2021.) |
| Ref | Expression |
|---|---|
| diffifi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1001 |
. 2
| |
| 2 | simp1 1000 |
. 2
| |
| 3 | simp3 1002 |
. 2
| |
| 4 | sseq1 3224 |
. . . . . 6
| |
| 5 | 4 | anbi2d 464 |
. . . . 5
|
| 6 | difeq2 3293 |
. . . . . 6
| |
| 7 | 6 | eleq1d 2276 |
. . . . 5
|
| 8 | 5, 7 | imbi12d 234 |
. . . 4
|
| 9 | sseq1 3224 |
. . . . . 6
| |
| 10 | 9 | anbi2d 464 |
. . . . 5
|
| 11 | difeq2 3293 |
. . . . . 6
| |
| 12 | 11 | eleq1d 2276 |
. . . . 5
|
| 13 | 10, 12 | imbi12d 234 |
. . . 4
|
| 14 | sseq1 3224 |
. . . . . 6
| |
| 15 | 14 | anbi2d 464 |
. . . . 5
|
| 16 | difeq2 3293 |
. . . . . 6
| |
| 17 | 16 | eleq1d 2276 |
. . . . 5
|
| 18 | 15, 17 | imbi12d 234 |
. . . 4
|
| 19 | sseq1 3224 |
. . . . . 6
| |
| 20 | 19 | anbi2d 464 |
. . . . 5
|
| 21 | difeq2 3293 |
. . . . . 6
| |
| 22 | 21 | eleq1d 2276 |
. . . . 5
|
| 23 | 20, 22 | imbi12d 234 |
. . . 4
|
| 24 | dif0 3539 |
. . . . . . 7
| |
| 25 | 24 | eleq1i 2273 |
. . . . . 6
|
| 26 | 25 | biimpri 133 |
. . . . 5
|
| 27 | 26 | adantr 276 |
. . . 4
|
| 28 | difun1 3441 |
. . . . . 6
| |
| 29 | simprl 529 |
. . . . . . . 8
| |
| 30 | simprr 531 |
. . . . . . . . 9
| |
| 31 | 30 | unssad 3358 |
. . . . . . . 8
|
| 32 | simplr 528 |
. . . . . . . 8
| |
| 33 | 29, 31, 32 | mp2and 433 |
. . . . . . 7
|
| 34 | vsnid 3675 |
. . . . . . . . . 10
| |
| 35 | simprr 531 |
. . . . . . . . . . . 12
| |
| 36 | 35 | unssbd 3359 |
. . . . . . . . . . 11
|
| 37 | 36 | sseld 3200 |
. . . . . . . . . 10
|
| 38 | 34, 37 | mpi 15 |
. . . . . . . . 9
|
| 39 | 38 | adantllr 481 |
. . . . . . . 8
|
| 40 | simpllr 534 |
. . . . . . . 8
| |
| 41 | 39, 40 | eldifd 3184 |
. . . . . . 7
|
| 42 | diffisn 7016 |
. . . . . . 7
| |
| 43 | 33, 41, 42 | syl2anc 411 |
. . . . . 6
|
| 44 | 28, 43 | eqeltrid 2294 |
. . . . 5
|
| 45 | 44 | exp31 364 |
. . . 4
|
| 46 | 8, 13, 18, 23, 27, 45 | findcard2s 7013 |
. . 3
|
| 47 | 46 | imp 124 |
. 2
|
| 48 | 1, 2, 3, 47 | syl12anc 1248 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-er 6643 df-en 6851 df-fin 6853 |
| This theorem is referenced by: unfiin 7049 fihashssdif 11000 hashdifpr 11002 fsumlessfi 11886 hash2iun1dif1 11906 |
| Copyright terms: Public domain | W3C validator |