Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnegexlem3 | Unicode version |
Description: Existence of real number difference. Lemma for cnegex 8076. (Contributed by Eric Schmidt, 22-May-2007.) |
Ref | Expression |
---|---|
cnegexlem3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | readdcl 7879 | . . . . . 6 | |
2 | ax-rnegex 7862 | . . . . . 6 | |
3 | 1, 2 | syl 14 | . . . . 5 |
4 | 3 | adantlr 469 | . . . 4 |
5 | 4 | adantr 274 | . . 3 |
6 | recn 7886 | . . . . . . . 8 | |
7 | recn 7886 | . . . . . . . 8 | |
8 | 6, 7 | anim12i 336 | . . . . . . 7 |
9 | 8 | anim1i 338 | . . . . . 6 |
10 | 9 | anim1i 338 | . . . . 5 |
11 | recn 7886 | . . . . 5 | |
12 | recn 7886 | . . . . . . . . . 10 | |
13 | add32 8057 | . . . . . . . . . . . 12 | |
14 | 13 | 3expa 1193 | . . . . . . . . . . 11 |
15 | addcl 7878 | . . . . . . . . . . . . 13 | |
16 | addcom 8035 | . . . . . . . . . . . . 13 | |
17 | 15, 16 | sylan 281 | . . . . . . . . . . . 12 |
18 | 17 | an32s 558 | . . . . . . . . . . 11 |
19 | 14, 18 | eqtr2d 2199 | . . . . . . . . . 10 |
20 | 12, 19 | sylanl2 401 | . . . . . . . . 9 |
21 | 20 | adantllr 473 | . . . . . . . 8 |
22 | 21 | adantlr 469 | . . . . . . 7 |
23 | addcom 8035 | . . . . . . . . . . . 12 | |
24 | 23 | ancoms 266 | . . . . . . . . . . 11 |
25 | 12, 24 | sylan2 284 | . . . . . . . . . 10 |
26 | id 19 | . . . . . . . . . 10 | |
27 | 25, 26 | sylan9eq 2219 | . . . . . . . . 9 |
28 | 27 | adantlll 472 | . . . . . . . 8 |
29 | 28 | adantr 274 | . . . . . . 7 |
30 | 22, 29 | eqeq12d 2180 | . . . . . 6 |
31 | simplr 520 | . . . . . . . 8 | |
32 | 15 | adantlr 469 | . . . . . . . . 9 |
33 | 32 | adantlr 469 | . . . . . . . 8 |
34 | simpllr 524 | . . . . . . . 8 | |
35 | cnegexlem1 8073 | . . . . . . . 8 | |
36 | 31, 33, 34, 35 | syl3anc 1228 | . . . . . . 7 |
37 | 36 | adantlr 469 | . . . . . 6 |
38 | 30, 37 | bitr3d 189 | . . . . 5 |
39 | 10, 11, 38 | syl2an 287 | . . . 4 |
40 | 39 | rexbidva 2463 | . . 3 |
41 | 5, 40 | mpbid 146 | . 2 |
42 | ax-rnegex 7862 | . . 3 | |
43 | 42 | adantl 275 | . 2 |
44 | 41, 43 | r19.29a 2609 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wrex 2445 (class class class)co 5842 cc 7751 cr 7752 cc0 7753 caddc 7756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7845 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 |
This theorem is referenced by: cnegex 8076 |
Copyright terms: Public domain | W3C validator |