ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnegexlem3 Unicode version

Theorem cnegexlem3 8075
Description: Existence of real number difference. Lemma for cnegex 8076. (Contributed by Eric Schmidt, 22-May-2007.)
Assertion
Ref Expression
cnegexlem3  |-  ( ( b  e.  RR  /\  y  e.  RR )  ->  E. c  e.  RR  ( b  +  c )  =  y )
Distinct variable group:    b, c, y

Proof of Theorem cnegexlem3
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 readdcl 7879 . . . . . 6  |-  ( ( b  e.  RR  /\  x  e.  RR )  ->  ( b  +  x
)  e.  RR )
2 ax-rnegex 7862 . . . . . 6  |-  ( ( b  +  x )  e.  RR  ->  E. c  e.  RR  ( ( b  +  x )  +  c )  =  0 )
31, 2syl 14 . . . . 5  |-  ( ( b  e.  RR  /\  x  e.  RR )  ->  E. c  e.  RR  ( ( b  +  x )  +  c )  =  0 )
43adantlr 469 . . . 4  |-  ( ( ( b  e.  RR  /\  y  e.  RR )  /\  x  e.  RR )  ->  E. c  e.  RR  ( ( b  +  x )  +  c )  =  0 )
54adantr 274 . . 3  |-  ( ( ( ( b  e.  RR  /\  y  e.  RR )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 )  ->  E. c  e.  RR  ( ( b  +  x )  +  c )  =  0 )
6 recn 7886 . . . . . . . 8  |-  ( b  e.  RR  ->  b  e.  CC )
7 recn 7886 . . . . . . . 8  |-  ( y  e.  RR  ->  y  e.  CC )
86, 7anim12i 336 . . . . . . 7  |-  ( ( b  e.  RR  /\  y  e.  RR )  ->  ( b  e.  CC  /\  y  e.  CC ) )
98anim1i 338 . . . . . 6  |-  ( ( ( b  e.  RR  /\  y  e.  RR )  /\  x  e.  RR )  ->  ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR ) )
109anim1i 338 . . . . 5  |-  ( ( ( ( b  e.  RR  /\  y  e.  RR )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 )  -> 
( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 ) )
11 recn 7886 . . . . 5  |-  ( c  e.  RR  ->  c  e.  CC )
12 recn 7886 . . . . . . . . . 10  |-  ( x  e.  RR  ->  x  e.  CC )
13 add32 8057 . . . . . . . . . . . 12  |-  ( ( b  e.  CC  /\  x  e.  CC  /\  c  e.  CC )  ->  (
( b  +  x
)  +  c )  =  ( ( b  +  c )  +  x ) )
14133expa 1193 . . . . . . . . . . 11  |-  ( ( ( b  e.  CC  /\  x  e.  CC )  /\  c  e.  CC )  ->  ( ( b  +  x )  +  c )  =  ( ( b  +  c )  +  x ) )
15 addcl 7878 . . . . . . . . . . . . 13  |-  ( ( b  e.  CC  /\  c  e.  CC )  ->  ( b  +  c )  e.  CC )
16 addcom 8035 . . . . . . . . . . . . 13  |-  ( ( ( b  +  c )  e.  CC  /\  x  e.  CC )  ->  ( ( b  +  c )  +  x
)  =  ( x  +  ( b  +  c ) ) )
1715, 16sylan 281 . . . . . . . . . . . 12  |-  ( ( ( b  e.  CC  /\  c  e.  CC )  /\  x  e.  CC )  ->  ( ( b  +  c )  +  x )  =  ( x  +  ( b  +  c ) ) )
1817an32s 558 . . . . . . . . . . 11  |-  ( ( ( b  e.  CC  /\  x  e.  CC )  /\  c  e.  CC )  ->  ( ( b  +  c )  +  x )  =  ( x  +  ( b  +  c ) ) )
1914, 18eqtr2d 2199 . . . . . . . . . 10  |-  ( ( ( b  e.  CC  /\  x  e.  CC )  /\  c  e.  CC )  ->  ( x  +  ( b  +  c ) )  =  ( ( b  +  x
)  +  c ) )
2012, 19sylanl2 401 . . . . . . . . 9  |-  ( ( ( b  e.  CC  /\  x  e.  RR )  /\  c  e.  CC )  ->  ( x  +  ( b  +  c ) )  =  ( ( b  +  x
)  +  c ) )
2120adantllr 473 . . . . . . . 8  |-  ( ( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  c  e.  CC )  ->  (
x  +  ( b  +  c ) )  =  ( ( b  +  x )  +  c ) )
2221adantlr 469 . . . . . . 7  |-  ( ( ( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 )  /\  c  e.  CC )  ->  ( x  +  ( b  +  c ) )  =  ( ( b  +  x )  +  c ) )
23 addcom 8035 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  =  ( y  +  x ) )
2423ancoms 266 . . . . . . . . . . 11  |-  ( ( y  e.  CC  /\  x  e.  CC )  ->  ( x  +  y )  =  ( y  +  x ) )
2512, 24sylan2 284 . . . . . . . . . 10  |-  ( ( y  e.  CC  /\  x  e.  RR )  ->  ( x  +  y )  =  ( y  +  x ) )
26 id 19 . . . . . . . . . 10  |-  ( ( y  +  x )  =  0  ->  (
y  +  x )  =  0 )
2725, 26sylan9eq 2219 . . . . . . . . 9  |-  ( ( ( y  e.  CC  /\  x  e.  RR )  /\  ( y  +  x )  =  0 )  ->  ( x  +  y )  =  0 )
2827adantlll 472 . . . . . . . 8  |-  ( ( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 )  -> 
( x  +  y )  =  0 )
2928adantr 274 . . . . . . 7  |-  ( ( ( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 )  /\  c  e.  CC )  ->  ( x  +  y )  =  0 )
3022, 29eqeq12d 2180 . . . . . 6  |-  ( ( ( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 )  /\  c  e.  CC )  ->  ( ( x  +  ( b  +  c ) )  =  ( x  +  y )  <-> 
( ( b  +  x )  +  c )  =  0 ) )
31 simplr 520 . . . . . . . 8  |-  ( ( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  c  e.  CC )  ->  x  e.  RR )
3215adantlr 469 . . . . . . . . 9  |-  ( ( ( b  e.  CC  /\  y  e.  CC )  /\  c  e.  CC )  ->  ( b  +  c )  e.  CC )
3332adantlr 469 . . . . . . . 8  |-  ( ( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  c  e.  CC )  ->  (
b  +  c )  e.  CC )
34 simpllr 524 . . . . . . . 8  |-  ( ( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  c  e.  CC )  ->  y  e.  CC )
35 cnegexlem1 8073 . . . . . . . 8  |-  ( ( x  e.  RR  /\  ( b  +  c )  e.  CC  /\  y  e.  CC )  ->  ( ( x  +  ( b  +  c ) )  =  ( x  +  y )  <-> 
( b  +  c )  =  y ) )
3631, 33, 34, 35syl3anc 1228 . . . . . . 7  |-  ( ( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  c  e.  CC )  ->  (
( x  +  ( b  +  c ) )  =  ( x  +  y )  <->  ( b  +  c )  =  y ) )
3736adantlr 469 . . . . . 6  |-  ( ( ( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 )  /\  c  e.  CC )  ->  ( ( x  +  ( b  +  c ) )  =  ( x  +  y )  <-> 
( b  +  c )  =  y ) )
3830, 37bitr3d 189 . . . . 5  |-  ( ( ( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 )  /\  c  e.  CC )  ->  ( ( ( b  +  x )  +  c )  =  0  <-> 
( b  +  c )  =  y ) )
3910, 11, 38syl2an 287 . . . 4  |-  ( ( ( ( ( b  e.  RR  /\  y  e.  RR )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 )  /\  c  e.  RR )  ->  ( ( ( b  +  x )  +  c )  =  0  <-> 
( b  +  c )  =  y ) )
4039rexbidva 2463 . . 3  |-  ( ( ( ( b  e.  RR  /\  y  e.  RR )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 )  -> 
( E. c  e.  RR  ( ( b  +  x )  +  c )  =  0  <->  E. c  e.  RR  ( b  +  c )  =  y ) )
415, 40mpbid 146 . 2  |-  ( ( ( ( b  e.  RR  /\  y  e.  RR )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 )  ->  E. c  e.  RR  ( b  +  c )  =  y )
42 ax-rnegex 7862 . . 3  |-  ( y  e.  RR  ->  E. x  e.  RR  ( y  +  x )  =  0 )
4342adantl 275 . 2  |-  ( ( b  e.  RR  /\  y  e.  RR )  ->  E. x  e.  RR  ( y  +  x
)  =  0 )
4441, 43r19.29a 2609 1  |-  ( ( b  e.  RR  /\  y  e.  RR )  ->  E. c  e.  RR  ( b  +  c )  =  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   E.wrex 2445  (class class class)co 5842   CCcc 7751   RRcr 7752   0cc0 7753    + caddc 7756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-resscn 7845  ax-1cn 7846  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845
This theorem is referenced by:  cnegex  8076
  Copyright terms: Public domain W3C validator