| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnegexlem3 | Unicode version | ||
| Description: Existence of real number difference. Lemma for cnegex 8250. (Contributed by Eric Schmidt, 22-May-2007.) |
| Ref | Expression |
|---|---|
| cnegexlem3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | readdcl 8051 |
. . . . . 6
| |
| 2 | ax-rnegex 8034 |
. . . . . 6
| |
| 3 | 1, 2 | syl 14 |
. . . . 5
|
| 4 | 3 | adantlr 477 |
. . . 4
|
| 5 | 4 | adantr 276 |
. . 3
|
| 6 | recn 8058 |
. . . . . . . 8
| |
| 7 | recn 8058 |
. . . . . . . 8
| |
| 8 | 6, 7 | anim12i 338 |
. . . . . . 7
|
| 9 | 8 | anim1i 340 |
. . . . . 6
|
| 10 | 9 | anim1i 340 |
. . . . 5
|
| 11 | recn 8058 |
. . . . 5
| |
| 12 | recn 8058 |
. . . . . . . . . 10
| |
| 13 | add32 8231 |
. . . . . . . . . . . 12
| |
| 14 | 13 | 3expa 1206 |
. . . . . . . . . . 11
|
| 15 | addcl 8050 |
. . . . . . . . . . . . 13
| |
| 16 | addcom 8209 |
. . . . . . . . . . . . 13
| |
| 17 | 15, 16 | sylan 283 |
. . . . . . . . . . . 12
|
| 18 | 17 | an32s 568 |
. . . . . . . . . . 11
|
| 19 | 14, 18 | eqtr2d 2239 |
. . . . . . . . . 10
|
| 20 | 12, 19 | sylanl2 403 |
. . . . . . . . 9
|
| 21 | 20 | adantllr 481 |
. . . . . . . 8
|
| 22 | 21 | adantlr 477 |
. . . . . . 7
|
| 23 | addcom 8209 |
. . . . . . . . . . . 12
| |
| 24 | 23 | ancoms 268 |
. . . . . . . . . . 11
|
| 25 | 12, 24 | sylan2 286 |
. . . . . . . . . 10
|
| 26 | id 19 |
. . . . . . . . . 10
| |
| 27 | 25, 26 | sylan9eq 2258 |
. . . . . . . . 9
|
| 28 | 27 | adantlll 480 |
. . . . . . . 8
|
| 29 | 28 | adantr 276 |
. . . . . . 7
|
| 30 | 22, 29 | eqeq12d 2220 |
. . . . . 6
|
| 31 | simplr 528 |
. . . . . . . 8
| |
| 32 | 15 | adantlr 477 |
. . . . . . . . 9
|
| 33 | 32 | adantlr 477 |
. . . . . . . 8
|
| 34 | simpllr 534 |
. . . . . . . 8
| |
| 35 | cnegexlem1 8247 |
. . . . . . . 8
| |
| 36 | 31, 33, 34, 35 | syl3anc 1250 |
. . . . . . 7
|
| 37 | 36 | adantlr 477 |
. . . . . 6
|
| 38 | 30, 37 | bitr3d 190 |
. . . . 5
|
| 39 | 10, 11, 38 | syl2an 289 |
. . . 4
|
| 40 | 39 | rexbidva 2503 |
. . 3
|
| 41 | 5, 40 | mpbid 147 |
. 2
|
| 42 | ax-rnegex 8034 |
. . 3
| |
| 43 | 42 | adantl 277 |
. 2
|
| 44 | 41, 43 | r19.29a 2649 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-resscn 8017 ax-1cn 8018 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-i2m1 8030 ax-0id 8033 ax-rnegex 8034 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 |
| This theorem is referenced by: cnegex 8250 |
| Copyright terms: Public domain | W3C validator |