ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnegexlem3 Unicode version

Theorem cnegexlem3 8035
Description: Existence of real number difference. Lemma for cnegex 8036. (Contributed by Eric Schmidt, 22-May-2007.)
Assertion
Ref Expression
cnegexlem3  |-  ( ( b  e.  RR  /\  y  e.  RR )  ->  E. c  e.  RR  ( b  +  c )  =  y )
Distinct variable group:    b, c, y

Proof of Theorem cnegexlem3
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 readdcl 7841 . . . . . 6  |-  ( ( b  e.  RR  /\  x  e.  RR )  ->  ( b  +  x
)  e.  RR )
2 ax-rnegex 7824 . . . . . 6  |-  ( ( b  +  x )  e.  RR  ->  E. c  e.  RR  ( ( b  +  x )  +  c )  =  0 )
31, 2syl 14 . . . . 5  |-  ( ( b  e.  RR  /\  x  e.  RR )  ->  E. c  e.  RR  ( ( b  +  x )  +  c )  =  0 )
43adantlr 469 . . . 4  |-  ( ( ( b  e.  RR  /\  y  e.  RR )  /\  x  e.  RR )  ->  E. c  e.  RR  ( ( b  +  x )  +  c )  =  0 )
54adantr 274 . . 3  |-  ( ( ( ( b  e.  RR  /\  y  e.  RR )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 )  ->  E. c  e.  RR  ( ( b  +  x )  +  c )  =  0 )
6 recn 7848 . . . . . . . 8  |-  ( b  e.  RR  ->  b  e.  CC )
7 recn 7848 . . . . . . . 8  |-  ( y  e.  RR  ->  y  e.  CC )
86, 7anim12i 336 . . . . . . 7  |-  ( ( b  e.  RR  /\  y  e.  RR )  ->  ( b  e.  CC  /\  y  e.  CC ) )
98anim1i 338 . . . . . 6  |-  ( ( ( b  e.  RR  /\  y  e.  RR )  /\  x  e.  RR )  ->  ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR ) )
109anim1i 338 . . . . 5  |-  ( ( ( ( b  e.  RR  /\  y  e.  RR )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 )  -> 
( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 ) )
11 recn 7848 . . . . 5  |-  ( c  e.  RR  ->  c  e.  CC )
12 recn 7848 . . . . . . . . . 10  |-  ( x  e.  RR  ->  x  e.  CC )
13 add32 8017 . . . . . . . . . . . 12  |-  ( ( b  e.  CC  /\  x  e.  CC  /\  c  e.  CC )  ->  (
( b  +  x
)  +  c )  =  ( ( b  +  c )  +  x ) )
14133expa 1185 . . . . . . . . . . 11  |-  ( ( ( b  e.  CC  /\  x  e.  CC )  /\  c  e.  CC )  ->  ( ( b  +  x )  +  c )  =  ( ( b  +  c )  +  x ) )
15 addcl 7840 . . . . . . . . . . . . 13  |-  ( ( b  e.  CC  /\  c  e.  CC )  ->  ( b  +  c )  e.  CC )
16 addcom 7995 . . . . . . . . . . . . 13  |-  ( ( ( b  +  c )  e.  CC  /\  x  e.  CC )  ->  ( ( b  +  c )  +  x
)  =  ( x  +  ( b  +  c ) ) )
1715, 16sylan 281 . . . . . . . . . . . 12  |-  ( ( ( b  e.  CC  /\  c  e.  CC )  /\  x  e.  CC )  ->  ( ( b  +  c )  +  x )  =  ( x  +  ( b  +  c ) ) )
1817an32s 558 . . . . . . . . . . 11  |-  ( ( ( b  e.  CC  /\  x  e.  CC )  /\  c  e.  CC )  ->  ( ( b  +  c )  +  x )  =  ( x  +  ( b  +  c ) ) )
1914, 18eqtr2d 2191 . . . . . . . . . 10  |-  ( ( ( b  e.  CC  /\  x  e.  CC )  /\  c  e.  CC )  ->  ( x  +  ( b  +  c ) )  =  ( ( b  +  x
)  +  c ) )
2012, 19sylanl2 401 . . . . . . . . 9  |-  ( ( ( b  e.  CC  /\  x  e.  RR )  /\  c  e.  CC )  ->  ( x  +  ( b  +  c ) )  =  ( ( b  +  x
)  +  c ) )
2120adantllr 473 . . . . . . . 8  |-  ( ( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  c  e.  CC )  ->  (
x  +  ( b  +  c ) )  =  ( ( b  +  x )  +  c ) )
2221adantlr 469 . . . . . . 7  |-  ( ( ( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 )  /\  c  e.  CC )  ->  ( x  +  ( b  +  c ) )  =  ( ( b  +  x )  +  c ) )
23 addcom 7995 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  =  ( y  +  x ) )
2423ancoms 266 . . . . . . . . . . 11  |-  ( ( y  e.  CC  /\  x  e.  CC )  ->  ( x  +  y )  =  ( y  +  x ) )
2512, 24sylan2 284 . . . . . . . . . 10  |-  ( ( y  e.  CC  /\  x  e.  RR )  ->  ( x  +  y )  =  ( y  +  x ) )
26 id 19 . . . . . . . . . 10  |-  ( ( y  +  x )  =  0  ->  (
y  +  x )  =  0 )
2725, 26sylan9eq 2210 . . . . . . . . 9  |-  ( ( ( y  e.  CC  /\  x  e.  RR )  /\  ( y  +  x )  =  0 )  ->  ( x  +  y )  =  0 )
2827adantlll 472 . . . . . . . 8  |-  ( ( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 )  -> 
( x  +  y )  =  0 )
2928adantr 274 . . . . . . 7  |-  ( ( ( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 )  /\  c  e.  CC )  ->  ( x  +  y )  =  0 )
3022, 29eqeq12d 2172 . . . . . 6  |-  ( ( ( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 )  /\  c  e.  CC )  ->  ( ( x  +  ( b  +  c ) )  =  ( x  +  y )  <-> 
( ( b  +  x )  +  c )  =  0 ) )
31 simplr 520 . . . . . . . 8  |-  ( ( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  c  e.  CC )  ->  x  e.  RR )
3215adantlr 469 . . . . . . . . 9  |-  ( ( ( b  e.  CC  /\  y  e.  CC )  /\  c  e.  CC )  ->  ( b  +  c )  e.  CC )
3332adantlr 469 . . . . . . . 8  |-  ( ( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  c  e.  CC )  ->  (
b  +  c )  e.  CC )
34 simpllr 524 . . . . . . . 8  |-  ( ( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  c  e.  CC )  ->  y  e.  CC )
35 cnegexlem1 8033 . . . . . . . 8  |-  ( ( x  e.  RR  /\  ( b  +  c )  e.  CC  /\  y  e.  CC )  ->  ( ( x  +  ( b  +  c ) )  =  ( x  +  y )  <-> 
( b  +  c )  =  y ) )
3631, 33, 34, 35syl3anc 1220 . . . . . . 7  |-  ( ( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  c  e.  CC )  ->  (
( x  +  ( b  +  c ) )  =  ( x  +  y )  <->  ( b  +  c )  =  y ) )
3736adantlr 469 . . . . . 6  |-  ( ( ( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 )  /\  c  e.  CC )  ->  ( ( x  +  ( b  +  c ) )  =  ( x  +  y )  <-> 
( b  +  c )  =  y ) )
3830, 37bitr3d 189 . . . . 5  |-  ( ( ( ( ( b  e.  CC  /\  y  e.  CC )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 )  /\  c  e.  CC )  ->  ( ( ( b  +  x )  +  c )  =  0  <-> 
( b  +  c )  =  y ) )
3910, 11, 38syl2an 287 . . . 4  |-  ( ( ( ( ( b  e.  RR  /\  y  e.  RR )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 )  /\  c  e.  RR )  ->  ( ( ( b  +  x )  +  c )  =  0  <-> 
( b  +  c )  =  y ) )
4039rexbidva 2454 . . 3  |-  ( ( ( ( b  e.  RR  /\  y  e.  RR )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 )  -> 
( E. c  e.  RR  ( ( b  +  x )  +  c )  =  0  <->  E. c  e.  RR  ( b  +  c )  =  y ) )
415, 40mpbid 146 . 2  |-  ( ( ( ( b  e.  RR  /\  y  e.  RR )  /\  x  e.  RR )  /\  (
y  +  x )  =  0 )  ->  E. c  e.  RR  ( b  +  c )  =  y )
42 ax-rnegex 7824 . . 3  |-  ( y  e.  RR  ->  E. x  e.  RR  ( y  +  x )  =  0 )
4342adantl 275 . 2  |-  ( ( b  e.  RR  /\  y  e.  RR )  ->  E. x  e.  RR  ( y  +  x
)  =  0 )
4441, 43r19.29a 2600 1  |-  ( ( b  e.  RR  /\  y  e.  RR )  ->  E. c  e.  RR  ( b  +  c )  =  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   E.wrex 2436  (class class class)co 5818   CCcc 7713   RRcr 7714   0cc0 7715    + caddc 7718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139  ax-resscn 7807  ax-1cn 7808  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-addcom 7815  ax-addass 7817  ax-i2m1 7820  ax-0id 7823  ax-rnegex 7824
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-iota 5132  df-fv 5175  df-ov 5821
This theorem is referenced by:  cnegex  8036
  Copyright terms: Public domain W3C validator