| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cnegexlem3 | Unicode version | ||
| Description: Existence of real number difference. Lemma for cnegex 8204. (Contributed by Eric Schmidt, 22-May-2007.) | 
| Ref | Expression | 
|---|---|
| cnegexlem3 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | readdcl 8005 | 
. . . . . 6
 | |
| 2 | ax-rnegex 7988 | 
. . . . . 6
 | |
| 3 | 1, 2 | syl 14 | 
. . . . 5
 | 
| 4 | 3 | adantlr 477 | 
. . . 4
 | 
| 5 | 4 | adantr 276 | 
. . 3
 | 
| 6 | recn 8012 | 
. . . . . . . 8
 | |
| 7 | recn 8012 | 
. . . . . . . 8
 | |
| 8 | 6, 7 | anim12i 338 | 
. . . . . . 7
 | 
| 9 | 8 | anim1i 340 | 
. . . . . 6
 | 
| 10 | 9 | anim1i 340 | 
. . . . 5
 | 
| 11 | recn 8012 | 
. . . . 5
 | |
| 12 | recn 8012 | 
. . . . . . . . . 10
 | |
| 13 | add32 8185 | 
. . . . . . . . . . . 12
 | |
| 14 | 13 | 3expa 1205 | 
. . . . . . . . . . 11
 | 
| 15 | addcl 8004 | 
. . . . . . . . . . . . 13
 | |
| 16 | addcom 8163 | 
. . . . . . . . . . . . 13
 | |
| 17 | 15, 16 | sylan 283 | 
. . . . . . . . . . . 12
 | 
| 18 | 17 | an32s 568 | 
. . . . . . . . . . 11
 | 
| 19 | 14, 18 | eqtr2d 2230 | 
. . . . . . . . . 10
 | 
| 20 | 12, 19 | sylanl2 403 | 
. . . . . . . . 9
 | 
| 21 | 20 | adantllr 481 | 
. . . . . . . 8
 | 
| 22 | 21 | adantlr 477 | 
. . . . . . 7
 | 
| 23 | addcom 8163 | 
. . . . . . . . . . . 12
 | |
| 24 | 23 | ancoms 268 | 
. . . . . . . . . . 11
 | 
| 25 | 12, 24 | sylan2 286 | 
. . . . . . . . . 10
 | 
| 26 | id 19 | 
. . . . . . . . . 10
 | |
| 27 | 25, 26 | sylan9eq 2249 | 
. . . . . . . . 9
 | 
| 28 | 27 | adantlll 480 | 
. . . . . . . 8
 | 
| 29 | 28 | adantr 276 | 
. . . . . . 7
 | 
| 30 | 22, 29 | eqeq12d 2211 | 
. . . . . 6
 | 
| 31 | simplr 528 | 
. . . . . . . 8
 | |
| 32 | 15 | adantlr 477 | 
. . . . . . . . 9
 | 
| 33 | 32 | adantlr 477 | 
. . . . . . . 8
 | 
| 34 | simpllr 534 | 
. . . . . . . 8
 | |
| 35 | cnegexlem1 8201 | 
. . . . . . . 8
 | |
| 36 | 31, 33, 34, 35 | syl3anc 1249 | 
. . . . . . 7
 | 
| 37 | 36 | adantlr 477 | 
. . . . . 6
 | 
| 38 | 30, 37 | bitr3d 190 | 
. . . . 5
 | 
| 39 | 10, 11, 38 | syl2an 289 | 
. . . 4
 | 
| 40 | 39 | rexbidva 2494 | 
. . 3
 | 
| 41 | 5, 40 | mpbid 147 | 
. 2
 | 
| 42 | ax-rnegex 7988 | 
. . 3
 | |
| 43 | 42 | adantl 277 | 
. 2
 | 
| 44 | 41, 43 | r19.29a 2640 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7971 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 | 
| This theorem is referenced by: cnegex 8204 | 
| Copyright terms: Public domain | W3C validator |