ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw2dvdslemn Unicode version

Theorem pw2dvdslemn 12097
Description: Lemma for pw2dvds 12098. If a natural number has some power of two which does not divide it, there is a highest power of two which does divide it. (Contributed by Jim Kingdon, 14-Nov-2021.)
Assertion
Ref Expression
pw2dvdslemn  |-  ( ( N  e.  NN  /\  A  e.  NN  /\  -.  ( 2 ^ A
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )
Distinct variable group:    m, N
Allowed substitution hint:    A( m)

Proof of Theorem pw2dvdslemn
Dummy variables  w  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpb 985 . 2  |-  ( ( N  e.  NN  /\  A  e.  NN  /\  -.  ( 2 ^ A
)  ||  N )  ->  ( N  e.  NN  /\ 
-.  ( 2 ^ A )  ||  N
) )
2 oveq2 5850 . . . . . . . 8  |-  ( w  =  1  ->  (
2 ^ w )  =  ( 2 ^ 1 ) )
32breq1d 3992 . . . . . . 7  |-  ( w  =  1  ->  (
( 2 ^ w
)  ||  N  <->  ( 2 ^ 1 )  ||  N ) )
43notbid 657 . . . . . 6  |-  ( w  =  1  ->  ( -.  ( 2 ^ w
)  ||  N  <->  -.  (
2 ^ 1 ) 
||  N ) )
54anbi2d 460 . . . . 5  |-  ( w  =  1  ->  (
( N  e.  NN  /\ 
-.  ( 2 ^ w )  ||  N
)  <->  ( N  e.  NN  /\  -.  (
2 ^ 1 ) 
||  N ) ) )
65imbi1d 230 . . . 4  |-  ( w  =  1  ->  (
( ( N  e.  NN  /\  -.  (
2 ^ w ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )  <->  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) ) )
7 oveq2 5850 . . . . . . . 8  |-  ( w  =  k  ->  (
2 ^ w )  =  ( 2 ^ k ) )
87breq1d 3992 . . . . . . 7  |-  ( w  =  k  ->  (
( 2 ^ w
)  ||  N  <->  ( 2 ^ k )  ||  N ) )
98notbid 657 . . . . . 6  |-  ( w  =  k  ->  ( -.  ( 2 ^ w
)  ||  N  <->  -.  (
2 ^ k ) 
||  N ) )
109anbi2d 460 . . . . 5  |-  ( w  =  k  ->  (
( N  e.  NN  /\ 
-.  ( 2 ^ w )  ||  N
)  <->  ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N ) ) )
1110imbi1d 230 . . . 4  |-  ( w  =  k  ->  (
( ( N  e.  NN  /\  -.  (
2 ^ w ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )  <->  ( ( N  e.  NN  /\  -.  ( 2 ^ k
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) ) )
12 oveq2 5850 . . . . . . . 8  |-  ( w  =  ( k  +  1 )  ->  (
2 ^ w )  =  ( 2 ^ ( k  +  1 ) ) )
1312breq1d 3992 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  (
( 2 ^ w
)  ||  N  <->  ( 2 ^ ( k  +  1 ) )  ||  N ) )
1413notbid 657 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  ( -.  ( 2 ^ w
)  ||  N  <->  -.  (
2 ^ ( k  +  1 ) ) 
||  N ) )
1514anbi2d 460 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( N  e.  NN  /\ 
-.  ( 2 ^ w )  ||  N
)  <->  ( N  e.  NN  /\  -.  (
2 ^ ( k  +  1 ) ) 
||  N ) ) )
1615imbi1d 230 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( ( N  e.  NN  /\  -.  (
2 ^ w ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )  <->  ( ( N  e.  NN  /\  -.  ( 2 ^ (
k  +  1 ) )  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) ) )
17 oveq2 5850 . . . . . . . 8  |-  ( w  =  A  ->  (
2 ^ w )  =  ( 2 ^ A ) )
1817breq1d 3992 . . . . . . 7  |-  ( w  =  A  ->  (
( 2 ^ w
)  ||  N  <->  ( 2 ^ A )  ||  N ) )
1918notbid 657 . . . . . 6  |-  ( w  =  A  ->  ( -.  ( 2 ^ w
)  ||  N  <->  -.  (
2 ^ A ) 
||  N ) )
2019anbi2d 460 . . . . 5  |-  ( w  =  A  ->  (
( N  e.  NN  /\ 
-.  ( 2 ^ w )  ||  N
)  <->  ( N  e.  NN  /\  -.  (
2 ^ A ) 
||  N ) ) )
2120imbi1d 230 . . . 4  |-  ( w  =  A  ->  (
( ( N  e.  NN  /\  -.  (
2 ^ w ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )  <->  ( ( N  e.  NN  /\  -.  ( 2 ^ A
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) ) )
22 0nn0 9129 . . . . . 6  |-  0  e.  NN0
2322a1i 9 . . . . 5  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  0  e.  NN0 )
24 oveq2 5850 . . . . . . . 8  |-  ( m  =  0  ->  (
2 ^ m )  =  ( 2 ^ 0 ) )
2524breq1d 3992 . . . . . . 7  |-  ( m  =  0  ->  (
( 2 ^ m
)  ||  N  <->  ( 2 ^ 0 )  ||  N ) )
26 oveq1 5849 . . . . . . . . . 10  |-  ( m  =  0  ->  (
m  +  1 )  =  ( 0  +  1 ) )
2726oveq2d 5858 . . . . . . . . 9  |-  ( m  =  0  ->  (
2 ^ ( m  +  1 ) )  =  ( 2 ^ ( 0  +  1 ) ) )
2827breq1d 3992 . . . . . . . 8  |-  ( m  =  0  ->  (
( 2 ^ (
m  +  1 ) )  ||  N  <->  ( 2 ^ ( 0  +  1 ) )  ||  N ) )
2928notbid 657 . . . . . . 7  |-  ( m  =  0  ->  ( -.  ( 2 ^ (
m  +  1 ) )  ||  N  <->  -.  (
2 ^ ( 0  +  1 ) ) 
||  N ) )
3025, 29anbi12d 465 . . . . . 6  |-  ( m  =  0  ->  (
( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
)  <->  ( ( 2 ^ 0 )  ||  N  /\  -.  ( 2 ^ ( 0  +  1 ) )  ||  N ) ) )
3130adantl 275 . . . . 5  |-  ( ( ( N  e.  NN  /\ 
-.  ( 2 ^ 1 )  ||  N
)  /\  m  = 
0 )  ->  (
( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
)  <->  ( ( 2 ^ 0 )  ||  N  /\  -.  ( 2 ^ ( 0  +  1 ) )  ||  N ) ) )
32 2cnd 8930 . . . . . . . 8  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  2  e.  CC )
3332exp0d 10582 . . . . . . 7  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  ( 2 ^ 0 )  =  1 )
34 simpl 108 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  N  e.  NN )
3534nnzd 9312 . . . . . . . 8  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  N  e.  ZZ )
36 1dvds 11745 . . . . . . . 8  |-  ( N  e.  ZZ  ->  1  ||  N )
3735, 36syl 14 . . . . . . 7  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  1  ||  N
)
3833, 37eqbrtrd 4004 . . . . . 6  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  ( 2 ^ 0 )  ||  N
)
39 simpr 109 . . . . . . 7  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  -.  ( 2 ^ 1 )  ||  N )
40 0p1e1 8971 . . . . . . . . 9  |-  ( 0  +  1 )  =  1
4140oveq2i 5853 . . . . . . . 8  |-  ( 2 ^ ( 0  +  1 ) )  =  ( 2 ^ 1 )
4241breq1i 3989 . . . . . . 7  |-  ( ( 2 ^ ( 0  +  1 ) ) 
||  N  <->  ( 2 ^ 1 )  ||  N )
4339, 42sylnibr 667 . . . . . 6  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  -.  ( 2 ^ ( 0  +  1 ) )  ||  N )
4438, 43jca 304 . . . . 5  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  ( ( 2 ^ 0 )  ||  N  /\  -.  ( 2 ^ ( 0  +  1 ) )  ||  N ) )
4523, 31, 44rspcedvd 2836 . . . 4  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )
46 simpll 519 . . . . . . . . 9  |-  ( ( ( k  e.  NN  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  (
2 ^ k ) 
||  N )  -> 
k  e.  NN )
4746nnnn0d 9167 . . . . . . . 8  |-  ( ( ( k  e.  NN  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  (
2 ^ k ) 
||  N )  -> 
k  e.  NN0 )
48 oveq2 5850 . . . . . . . . . . 11  |-  ( m  =  k  ->  (
2 ^ m )  =  ( 2 ^ k ) )
4948breq1d 3992 . . . . . . . . . 10  |-  ( m  =  k  ->  (
( 2 ^ m
)  ||  N  <->  ( 2 ^ k )  ||  N ) )
50 oveq1 5849 . . . . . . . . . . . . 13  |-  ( m  =  k  ->  (
m  +  1 )  =  ( k  +  1 ) )
5150oveq2d 5858 . . . . . . . . . . . 12  |-  ( m  =  k  ->  (
2 ^ ( m  +  1 ) )  =  ( 2 ^ ( k  +  1 ) ) )
5251breq1d 3992 . . . . . . . . . . 11  |-  ( m  =  k  ->  (
( 2 ^ (
m  +  1 ) )  ||  N  <->  ( 2 ^ ( k  +  1 ) )  ||  N ) )
5352notbid 657 . . . . . . . . . 10  |-  ( m  =  k  ->  ( -.  ( 2 ^ (
m  +  1 ) )  ||  N  <->  -.  (
2 ^ ( k  +  1 ) ) 
||  N ) )
5449, 53anbi12d 465 . . . . . . . . 9  |-  ( m  =  k  ->  (
( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
)  <->  ( ( 2 ^ k )  ||  N  /\  -.  ( 2 ^ ( k  +  1 ) )  ||  N ) ) )
5554adantl 275 . . . . . . . 8  |-  ( ( ( ( k  e.  NN  /\  ( N  e.  NN  /\  -.  ( 2 ^ (
k  +  1 ) )  ||  N ) )  /\  ( 2 ^ k )  ||  N )  /\  m  =  k )  -> 
( ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N )  <->  ( (
2 ^ k ) 
||  N  /\  -.  ( 2 ^ (
k  +  1 ) )  ||  N ) ) )
56 simpr 109 . . . . . . . . 9  |-  ( ( ( k  e.  NN  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  (
2 ^ k ) 
||  N )  -> 
( 2 ^ k
)  ||  N )
57 simplrr 526 . . . . . . . . 9  |-  ( ( ( k  e.  NN  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  (
2 ^ k ) 
||  N )  ->  -.  ( 2 ^ (
k  +  1 ) )  ||  N )
5856, 57jca 304 . . . . . . . 8  |-  ( ( ( k  e.  NN  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  (
2 ^ k ) 
||  N )  -> 
( ( 2 ^ k )  ||  N  /\  -.  ( 2 ^ ( k  +  1 ) )  ||  N
) )
5947, 55, 58rspcedvd 2836 . . . . . . 7  |-  ( ( ( k  e.  NN  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )
6059adantllr 473 . . . . . 6  |-  ( ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  ( 2 ^ k
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )
61 simprl 521 . . . . . . . 8  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  ->  N  e.  NN )
6261anim1i 338 . . . . . . 7  |-  ( ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  ( 2 ^ k
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  -.  ( 2 ^ k
)  ||  N )  ->  ( N  e.  NN  /\ 
-.  ( 2 ^ k )  ||  N
) )
63 simpllr 524 . . . . . . 7  |-  ( ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  ( 2 ^ k
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  -.  ( 2 ^ k
)  ||  N )  ->  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )
6462, 63mpd 13 . . . . . 6  |-  ( ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  ( 2 ^ k
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  -.  ( 2 ^ k
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )
65 2nn 9018 . . . . . . . . 9  |-  2  e.  NN
66 simpll 519 . . . . . . . . . 10  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  ->  k  e.  NN )
6766nnnn0d 9167 . . . . . . . . 9  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  ->  k  e.  NN0 )
68 nnexpcl 10468 . . . . . . . . 9  |-  ( ( 2  e.  NN  /\  k  e.  NN0 )  -> 
( 2 ^ k
)  e.  NN )
6965, 67, 68sylancr 411 . . . . . . . 8  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  ->  (
2 ^ k )  e.  NN )
7061nnzd 9312 . . . . . . . 8  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  ->  N  e.  ZZ )
71 dvdsdc 11738 . . . . . . . 8  |-  ( ( ( 2 ^ k
)  e.  NN  /\  N  e.  ZZ )  -> DECID  ( 2 ^ k ) 
||  N )
7269, 70, 71syl2anc 409 . . . . . . 7  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  -> DECID  ( 2 ^ k
)  ||  N )
73 exmiddc 826 . . . . . . 7  |-  (DECID  ( 2 ^ k )  ||  N  ->  ( ( 2 ^ k )  ||  N  \/  -.  (
2 ^ k ) 
||  N ) )
7472, 73syl 14 . . . . . 6  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  ->  (
( 2 ^ k
)  ||  N  \/  -.  ( 2 ^ k
)  ||  N )
)
7560, 64, 74mpjaodan 788 . . . . 5  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N ) )
7675exp31 362 . . . 4  |-  ( k  e.  NN  ->  (
( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )  ->  (
( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
)  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N ) ) ) )
776, 11, 16, 21, 45, 76nnind 8873 . . 3  |-  ( A  e.  NN  ->  (
( N  e.  NN  /\ 
-.  ( 2 ^ A )  ||  N
)  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N ) ) )
78773ad2ant2 1009 . 2  |-  ( ( N  e.  NN  /\  A  e.  NN  /\  -.  ( 2 ^ A
)  ||  N )  ->  ( ( N  e.  NN  /\  -.  (
2 ^ A ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )
791, 78mpd 13 1  |-  ( ( N  e.  NN  /\  A  e.  NN  /\  -.  ( 2 ^ A
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824    /\ w3a 968    = wceq 1343    e. wcel 2136   E.wrex 2445   class class class wbr 3982  (class class class)co 5842   0cc0 7753   1c1 7754    + caddc 7756   NNcn 8857   2c2 8908   NN0cn0 9114   ZZcz 9191   ^cexp 10454    || cdvds 11727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-dvds 11728
This theorem is referenced by:  pw2dvds  12098
  Copyright terms: Public domain W3C validator