ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw2dvdslemn Unicode version

Theorem pw2dvdslemn 12673
Description: Lemma for pw2dvds 12674. If a natural number has some power of two which does not divide it, there is a highest power of two which does divide it. (Contributed by Jim Kingdon, 14-Nov-2021.)
Assertion
Ref Expression
pw2dvdslemn  |-  ( ( N  e.  NN  /\  A  e.  NN  /\  -.  ( 2 ^ A
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )
Distinct variable group:    m, N
Allowed substitution hint:    A( m)

Proof of Theorem pw2dvdslemn
Dummy variables  w  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpb 1019 . 2  |-  ( ( N  e.  NN  /\  A  e.  NN  /\  -.  ( 2 ^ A
)  ||  N )  ->  ( N  e.  NN  /\ 
-.  ( 2 ^ A )  ||  N
) )
2 oveq2 6002 . . . . . . . 8  |-  ( w  =  1  ->  (
2 ^ w )  =  ( 2 ^ 1 ) )
32breq1d 4092 . . . . . . 7  |-  ( w  =  1  ->  (
( 2 ^ w
)  ||  N  <->  ( 2 ^ 1 )  ||  N ) )
43notbid 671 . . . . . 6  |-  ( w  =  1  ->  ( -.  ( 2 ^ w
)  ||  N  <->  -.  (
2 ^ 1 ) 
||  N ) )
54anbi2d 464 . . . . 5  |-  ( w  =  1  ->  (
( N  e.  NN  /\ 
-.  ( 2 ^ w )  ||  N
)  <->  ( N  e.  NN  /\  -.  (
2 ^ 1 ) 
||  N ) ) )
65imbi1d 231 . . . 4  |-  ( w  =  1  ->  (
( ( N  e.  NN  /\  -.  (
2 ^ w ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )  <->  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) ) )
7 oveq2 6002 . . . . . . . 8  |-  ( w  =  k  ->  (
2 ^ w )  =  ( 2 ^ k ) )
87breq1d 4092 . . . . . . 7  |-  ( w  =  k  ->  (
( 2 ^ w
)  ||  N  <->  ( 2 ^ k )  ||  N ) )
98notbid 671 . . . . . 6  |-  ( w  =  k  ->  ( -.  ( 2 ^ w
)  ||  N  <->  -.  (
2 ^ k ) 
||  N ) )
109anbi2d 464 . . . . 5  |-  ( w  =  k  ->  (
( N  e.  NN  /\ 
-.  ( 2 ^ w )  ||  N
)  <->  ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N ) ) )
1110imbi1d 231 . . . 4  |-  ( w  =  k  ->  (
( ( N  e.  NN  /\  -.  (
2 ^ w ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )  <->  ( ( N  e.  NN  /\  -.  ( 2 ^ k
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) ) )
12 oveq2 6002 . . . . . . . 8  |-  ( w  =  ( k  +  1 )  ->  (
2 ^ w )  =  ( 2 ^ ( k  +  1 ) ) )
1312breq1d 4092 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  (
( 2 ^ w
)  ||  N  <->  ( 2 ^ ( k  +  1 ) )  ||  N ) )
1413notbid 671 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  ( -.  ( 2 ^ w
)  ||  N  <->  -.  (
2 ^ ( k  +  1 ) ) 
||  N ) )
1514anbi2d 464 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( N  e.  NN  /\ 
-.  ( 2 ^ w )  ||  N
)  <->  ( N  e.  NN  /\  -.  (
2 ^ ( k  +  1 ) ) 
||  N ) ) )
1615imbi1d 231 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( ( N  e.  NN  /\  -.  (
2 ^ w ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )  <->  ( ( N  e.  NN  /\  -.  ( 2 ^ (
k  +  1 ) )  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) ) )
17 oveq2 6002 . . . . . . . 8  |-  ( w  =  A  ->  (
2 ^ w )  =  ( 2 ^ A ) )
1817breq1d 4092 . . . . . . 7  |-  ( w  =  A  ->  (
( 2 ^ w
)  ||  N  <->  ( 2 ^ A )  ||  N ) )
1918notbid 671 . . . . . 6  |-  ( w  =  A  ->  ( -.  ( 2 ^ w
)  ||  N  <->  -.  (
2 ^ A ) 
||  N ) )
2019anbi2d 464 . . . . 5  |-  ( w  =  A  ->  (
( N  e.  NN  /\ 
-.  ( 2 ^ w )  ||  N
)  <->  ( N  e.  NN  /\  -.  (
2 ^ A ) 
||  N ) ) )
2120imbi1d 231 . . . 4  |-  ( w  =  A  ->  (
( ( N  e.  NN  /\  -.  (
2 ^ w ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )  <->  ( ( N  e.  NN  /\  -.  ( 2 ^ A
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) ) )
22 0nn0 9372 . . . . . 6  |-  0  e.  NN0
2322a1i 9 . . . . 5  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  0  e.  NN0 )
24 oveq2 6002 . . . . . . . 8  |-  ( m  =  0  ->  (
2 ^ m )  =  ( 2 ^ 0 ) )
2524breq1d 4092 . . . . . . 7  |-  ( m  =  0  ->  (
( 2 ^ m
)  ||  N  <->  ( 2 ^ 0 )  ||  N ) )
26 oveq1 6001 . . . . . . . . . 10  |-  ( m  =  0  ->  (
m  +  1 )  =  ( 0  +  1 ) )
2726oveq2d 6010 . . . . . . . . 9  |-  ( m  =  0  ->  (
2 ^ ( m  +  1 ) )  =  ( 2 ^ ( 0  +  1 ) ) )
2827breq1d 4092 . . . . . . . 8  |-  ( m  =  0  ->  (
( 2 ^ (
m  +  1 ) )  ||  N  <->  ( 2 ^ ( 0  +  1 ) )  ||  N ) )
2928notbid 671 . . . . . . 7  |-  ( m  =  0  ->  ( -.  ( 2 ^ (
m  +  1 ) )  ||  N  <->  -.  (
2 ^ ( 0  +  1 ) ) 
||  N ) )
3025, 29anbi12d 473 . . . . . 6  |-  ( m  =  0  ->  (
( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
)  <->  ( ( 2 ^ 0 )  ||  N  /\  -.  ( 2 ^ ( 0  +  1 ) )  ||  N ) ) )
3130adantl 277 . . . . 5  |-  ( ( ( N  e.  NN  /\ 
-.  ( 2 ^ 1 )  ||  N
)  /\  m  = 
0 )  ->  (
( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
)  <->  ( ( 2 ^ 0 )  ||  N  /\  -.  ( 2 ^ ( 0  +  1 ) )  ||  N ) ) )
32 2cnd 9171 . . . . . . . 8  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  2  e.  CC )
3332exp0d 10876 . . . . . . 7  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  ( 2 ^ 0 )  =  1 )
34 simpl 109 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  N  e.  NN )
3534nnzd 9556 . . . . . . . 8  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  N  e.  ZZ )
36 1dvds 12302 . . . . . . . 8  |-  ( N  e.  ZZ  ->  1  ||  N )
3735, 36syl 14 . . . . . . 7  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  1  ||  N
)
3833, 37eqbrtrd 4104 . . . . . 6  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  ( 2 ^ 0 )  ||  N
)
39 simpr 110 . . . . . . 7  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  -.  ( 2 ^ 1 )  ||  N )
40 0p1e1 9212 . . . . . . . . 9  |-  ( 0  +  1 )  =  1
4140oveq2i 6005 . . . . . . . 8  |-  ( 2 ^ ( 0  +  1 ) )  =  ( 2 ^ 1 )
4241breq1i 4089 . . . . . . 7  |-  ( ( 2 ^ ( 0  +  1 ) ) 
||  N  <->  ( 2 ^ 1 )  ||  N )
4339, 42sylnibr 681 . . . . . 6  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  -.  ( 2 ^ ( 0  +  1 ) )  ||  N )
4438, 43jca 306 . . . . 5  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  ( ( 2 ^ 0 )  ||  N  /\  -.  ( 2 ^ ( 0  +  1 ) )  ||  N ) )
4523, 31, 44rspcedvd 2913 . . . 4  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )
46 simpll 527 . . . . . . . . 9  |-  ( ( ( k  e.  NN  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  (
2 ^ k ) 
||  N )  -> 
k  e.  NN )
4746nnnn0d 9410 . . . . . . . 8  |-  ( ( ( k  e.  NN  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  (
2 ^ k ) 
||  N )  -> 
k  e.  NN0 )
48 oveq2 6002 . . . . . . . . . . 11  |-  ( m  =  k  ->  (
2 ^ m )  =  ( 2 ^ k ) )
4948breq1d 4092 . . . . . . . . . 10  |-  ( m  =  k  ->  (
( 2 ^ m
)  ||  N  <->  ( 2 ^ k )  ||  N ) )
50 oveq1 6001 . . . . . . . . . . . . 13  |-  ( m  =  k  ->  (
m  +  1 )  =  ( k  +  1 ) )
5150oveq2d 6010 . . . . . . . . . . . 12  |-  ( m  =  k  ->  (
2 ^ ( m  +  1 ) )  =  ( 2 ^ ( k  +  1 ) ) )
5251breq1d 4092 . . . . . . . . . . 11  |-  ( m  =  k  ->  (
( 2 ^ (
m  +  1 ) )  ||  N  <->  ( 2 ^ ( k  +  1 ) )  ||  N ) )
5352notbid 671 . . . . . . . . . 10  |-  ( m  =  k  ->  ( -.  ( 2 ^ (
m  +  1 ) )  ||  N  <->  -.  (
2 ^ ( k  +  1 ) ) 
||  N ) )
5449, 53anbi12d 473 . . . . . . . . 9  |-  ( m  =  k  ->  (
( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
)  <->  ( ( 2 ^ k )  ||  N  /\  -.  ( 2 ^ ( k  +  1 ) )  ||  N ) ) )
5554adantl 277 . . . . . . . 8  |-  ( ( ( ( k  e.  NN  /\  ( N  e.  NN  /\  -.  ( 2 ^ (
k  +  1 ) )  ||  N ) )  /\  ( 2 ^ k )  ||  N )  /\  m  =  k )  -> 
( ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N )  <->  ( (
2 ^ k ) 
||  N  /\  -.  ( 2 ^ (
k  +  1 ) )  ||  N ) ) )
56 simpr 110 . . . . . . . . 9  |-  ( ( ( k  e.  NN  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  (
2 ^ k ) 
||  N )  -> 
( 2 ^ k
)  ||  N )
57 simplrr 536 . . . . . . . . 9  |-  ( ( ( k  e.  NN  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  (
2 ^ k ) 
||  N )  ->  -.  ( 2 ^ (
k  +  1 ) )  ||  N )
5856, 57jca 306 . . . . . . . 8  |-  ( ( ( k  e.  NN  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  (
2 ^ k ) 
||  N )  -> 
( ( 2 ^ k )  ||  N  /\  -.  ( 2 ^ ( k  +  1 ) )  ||  N
) )
5947, 55, 58rspcedvd 2913 . . . . . . 7  |-  ( ( ( k  e.  NN  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )
6059adantllr 481 . . . . . 6  |-  ( ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  ( 2 ^ k
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )
61 simprl 529 . . . . . . . 8  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  ->  N  e.  NN )
6261anim1i 340 . . . . . . 7  |-  ( ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  ( 2 ^ k
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  -.  ( 2 ^ k
)  ||  N )  ->  ( N  e.  NN  /\ 
-.  ( 2 ^ k )  ||  N
) )
63 simpllr 534 . . . . . . 7  |-  ( ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  ( 2 ^ k
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  -.  ( 2 ^ k
)  ||  N )  ->  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )
6462, 63mpd 13 . . . . . 6  |-  ( ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  ( 2 ^ k
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  -.  ( 2 ^ k
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )
65 2nn 9260 . . . . . . . . 9  |-  2  e.  NN
66 simpll 527 . . . . . . . . . 10  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  ->  k  e.  NN )
6766nnnn0d 9410 . . . . . . . . 9  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  ->  k  e.  NN0 )
68 nnexpcl 10761 . . . . . . . . 9  |-  ( ( 2  e.  NN  /\  k  e.  NN0 )  -> 
( 2 ^ k
)  e.  NN )
6965, 67, 68sylancr 414 . . . . . . . 8  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  ->  (
2 ^ k )  e.  NN )
7061nnzd 9556 . . . . . . . 8  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  ->  N  e.  ZZ )
71 dvdsdc 12295 . . . . . . . 8  |-  ( ( ( 2 ^ k
)  e.  NN  /\  N  e.  ZZ )  -> DECID  ( 2 ^ k ) 
||  N )
7269, 70, 71syl2anc 411 . . . . . . 7  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  -> DECID  ( 2 ^ k
)  ||  N )
73 exmiddc 841 . . . . . . 7  |-  (DECID  ( 2 ^ k )  ||  N  ->  ( ( 2 ^ k )  ||  N  \/  -.  (
2 ^ k ) 
||  N ) )
7472, 73syl 14 . . . . . 6  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  ->  (
( 2 ^ k
)  ||  N  \/  -.  ( 2 ^ k
)  ||  N )
)
7560, 64, 74mpjaodan 803 . . . . 5  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N ) )
7675exp31 364 . . . 4  |-  ( k  e.  NN  ->  (
( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )  ->  (
( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
)  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N ) ) ) )
776, 11, 16, 21, 45, 76nnind 9114 . . 3  |-  ( A  e.  NN  ->  (
( N  e.  NN  /\ 
-.  ( 2 ^ A )  ||  N
)  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N ) ) )
78773ad2ant2 1043 . 2  |-  ( ( N  e.  NN  /\  A  e.  NN  /\  -.  ( 2 ^ A
)  ||  N )  ->  ( ( N  e.  NN  /\  -.  (
2 ^ A ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )
791, 78mpd 13 1  |-  ( ( N  e.  NN  /\  A  e.  NN  /\  -.  ( 2 ^ A
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    /\ w3a 1002    = wceq 1395    e. wcel 2200   E.wrex 2509   class class class wbr 4082  (class class class)co 5994   0cc0 7987   1c1 7988    + caddc 7990   NNcn 9098   2c2 9149   NN0cn0 9357   ZZcz 9434   ^cexp 10747    || cdvds 12284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-fl 10477  df-mod 10532  df-seqfrec 10657  df-exp 10748  df-dvds 12285
This theorem is referenced by:  pw2dvds  12674
  Copyright terms: Public domain W3C validator