ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw2dvdslemn Unicode version

Theorem pw2dvdslemn 12165
Description: Lemma for pw2dvds 12166. If a natural number has some power of two which does not divide it, there is a highest power of two which does divide it. (Contributed by Jim Kingdon, 14-Nov-2021.)
Assertion
Ref Expression
pw2dvdslemn  |-  ( ( N  e.  NN  /\  A  e.  NN  /\  -.  ( 2 ^ A
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )
Distinct variable group:    m, N
Allowed substitution hint:    A( m)

Proof of Theorem pw2dvdslemn
Dummy variables  w  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpb 995 . 2  |-  ( ( N  e.  NN  /\  A  e.  NN  /\  -.  ( 2 ^ A
)  ||  N )  ->  ( N  e.  NN  /\ 
-.  ( 2 ^ A )  ||  N
) )
2 oveq2 5883 . . . . . . . 8  |-  ( w  =  1  ->  (
2 ^ w )  =  ( 2 ^ 1 ) )
32breq1d 4014 . . . . . . 7  |-  ( w  =  1  ->  (
( 2 ^ w
)  ||  N  <->  ( 2 ^ 1 )  ||  N ) )
43notbid 667 . . . . . 6  |-  ( w  =  1  ->  ( -.  ( 2 ^ w
)  ||  N  <->  -.  (
2 ^ 1 ) 
||  N ) )
54anbi2d 464 . . . . 5  |-  ( w  =  1  ->  (
( N  e.  NN  /\ 
-.  ( 2 ^ w )  ||  N
)  <->  ( N  e.  NN  /\  -.  (
2 ^ 1 ) 
||  N ) ) )
65imbi1d 231 . . . 4  |-  ( w  =  1  ->  (
( ( N  e.  NN  /\  -.  (
2 ^ w ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )  <->  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) ) )
7 oveq2 5883 . . . . . . . 8  |-  ( w  =  k  ->  (
2 ^ w )  =  ( 2 ^ k ) )
87breq1d 4014 . . . . . . 7  |-  ( w  =  k  ->  (
( 2 ^ w
)  ||  N  <->  ( 2 ^ k )  ||  N ) )
98notbid 667 . . . . . 6  |-  ( w  =  k  ->  ( -.  ( 2 ^ w
)  ||  N  <->  -.  (
2 ^ k ) 
||  N ) )
109anbi2d 464 . . . . 5  |-  ( w  =  k  ->  (
( N  e.  NN  /\ 
-.  ( 2 ^ w )  ||  N
)  <->  ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N ) ) )
1110imbi1d 231 . . . 4  |-  ( w  =  k  ->  (
( ( N  e.  NN  /\  -.  (
2 ^ w ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )  <->  ( ( N  e.  NN  /\  -.  ( 2 ^ k
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) ) )
12 oveq2 5883 . . . . . . . 8  |-  ( w  =  ( k  +  1 )  ->  (
2 ^ w )  =  ( 2 ^ ( k  +  1 ) ) )
1312breq1d 4014 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  (
( 2 ^ w
)  ||  N  <->  ( 2 ^ ( k  +  1 ) )  ||  N ) )
1413notbid 667 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  ( -.  ( 2 ^ w
)  ||  N  <->  -.  (
2 ^ ( k  +  1 ) ) 
||  N ) )
1514anbi2d 464 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( N  e.  NN  /\ 
-.  ( 2 ^ w )  ||  N
)  <->  ( N  e.  NN  /\  -.  (
2 ^ ( k  +  1 ) ) 
||  N ) ) )
1615imbi1d 231 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( ( N  e.  NN  /\  -.  (
2 ^ w ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )  <->  ( ( N  e.  NN  /\  -.  ( 2 ^ (
k  +  1 ) )  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) ) )
17 oveq2 5883 . . . . . . . 8  |-  ( w  =  A  ->  (
2 ^ w )  =  ( 2 ^ A ) )
1817breq1d 4014 . . . . . . 7  |-  ( w  =  A  ->  (
( 2 ^ w
)  ||  N  <->  ( 2 ^ A )  ||  N ) )
1918notbid 667 . . . . . 6  |-  ( w  =  A  ->  ( -.  ( 2 ^ w
)  ||  N  <->  -.  (
2 ^ A ) 
||  N ) )
2019anbi2d 464 . . . . 5  |-  ( w  =  A  ->  (
( N  e.  NN  /\ 
-.  ( 2 ^ w )  ||  N
)  <->  ( N  e.  NN  /\  -.  (
2 ^ A ) 
||  N ) ) )
2120imbi1d 231 . . . 4  |-  ( w  =  A  ->  (
( ( N  e.  NN  /\  -.  (
2 ^ w ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )  <->  ( ( N  e.  NN  /\  -.  ( 2 ^ A
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) ) )
22 0nn0 9191 . . . . . 6  |-  0  e.  NN0
2322a1i 9 . . . . 5  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  0  e.  NN0 )
24 oveq2 5883 . . . . . . . 8  |-  ( m  =  0  ->  (
2 ^ m )  =  ( 2 ^ 0 ) )
2524breq1d 4014 . . . . . . 7  |-  ( m  =  0  ->  (
( 2 ^ m
)  ||  N  <->  ( 2 ^ 0 )  ||  N ) )
26 oveq1 5882 . . . . . . . . . 10  |-  ( m  =  0  ->  (
m  +  1 )  =  ( 0  +  1 ) )
2726oveq2d 5891 . . . . . . . . 9  |-  ( m  =  0  ->  (
2 ^ ( m  +  1 ) )  =  ( 2 ^ ( 0  +  1 ) ) )
2827breq1d 4014 . . . . . . . 8  |-  ( m  =  0  ->  (
( 2 ^ (
m  +  1 ) )  ||  N  <->  ( 2 ^ ( 0  +  1 ) )  ||  N ) )
2928notbid 667 . . . . . . 7  |-  ( m  =  0  ->  ( -.  ( 2 ^ (
m  +  1 ) )  ||  N  <->  -.  (
2 ^ ( 0  +  1 ) ) 
||  N ) )
3025, 29anbi12d 473 . . . . . 6  |-  ( m  =  0  ->  (
( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
)  <->  ( ( 2 ^ 0 )  ||  N  /\  -.  ( 2 ^ ( 0  +  1 ) )  ||  N ) ) )
3130adantl 277 . . . . 5  |-  ( ( ( N  e.  NN  /\ 
-.  ( 2 ^ 1 )  ||  N
)  /\  m  = 
0 )  ->  (
( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
)  <->  ( ( 2 ^ 0 )  ||  N  /\  -.  ( 2 ^ ( 0  +  1 ) )  ||  N ) ) )
32 2cnd 8992 . . . . . . . 8  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  2  e.  CC )
3332exp0d 10648 . . . . . . 7  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  ( 2 ^ 0 )  =  1 )
34 simpl 109 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  N  e.  NN )
3534nnzd 9374 . . . . . . . 8  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  N  e.  ZZ )
36 1dvds 11812 . . . . . . . 8  |-  ( N  e.  ZZ  ->  1  ||  N )
3735, 36syl 14 . . . . . . 7  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  1  ||  N
)
3833, 37eqbrtrd 4026 . . . . . 6  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  ( 2 ^ 0 )  ||  N
)
39 simpr 110 . . . . . . 7  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  -.  ( 2 ^ 1 )  ||  N )
40 0p1e1 9033 . . . . . . . . 9  |-  ( 0  +  1 )  =  1
4140oveq2i 5886 . . . . . . . 8  |-  ( 2 ^ ( 0  +  1 ) )  =  ( 2 ^ 1 )
4241breq1i 4011 . . . . . . 7  |-  ( ( 2 ^ ( 0  +  1 ) ) 
||  N  <->  ( 2 ^ 1 )  ||  N )
4339, 42sylnibr 677 . . . . . 6  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  -.  ( 2 ^ ( 0  +  1 ) )  ||  N )
4438, 43jca 306 . . . . 5  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  ( ( 2 ^ 0 )  ||  N  /\  -.  ( 2 ^ ( 0  +  1 ) )  ||  N ) )
4523, 31, 44rspcedvd 2848 . . . 4  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )
46 simpll 527 . . . . . . . . 9  |-  ( ( ( k  e.  NN  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  (
2 ^ k ) 
||  N )  -> 
k  e.  NN )
4746nnnn0d 9229 . . . . . . . 8  |-  ( ( ( k  e.  NN  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  (
2 ^ k ) 
||  N )  -> 
k  e.  NN0 )
48 oveq2 5883 . . . . . . . . . . 11  |-  ( m  =  k  ->  (
2 ^ m )  =  ( 2 ^ k ) )
4948breq1d 4014 . . . . . . . . . 10  |-  ( m  =  k  ->  (
( 2 ^ m
)  ||  N  <->  ( 2 ^ k )  ||  N ) )
50 oveq1 5882 . . . . . . . . . . . . 13  |-  ( m  =  k  ->  (
m  +  1 )  =  ( k  +  1 ) )
5150oveq2d 5891 . . . . . . . . . . . 12  |-  ( m  =  k  ->  (
2 ^ ( m  +  1 ) )  =  ( 2 ^ ( k  +  1 ) ) )
5251breq1d 4014 . . . . . . . . . . 11  |-  ( m  =  k  ->  (
( 2 ^ (
m  +  1 ) )  ||  N  <->  ( 2 ^ ( k  +  1 ) )  ||  N ) )
5352notbid 667 . . . . . . . . . 10  |-  ( m  =  k  ->  ( -.  ( 2 ^ (
m  +  1 ) )  ||  N  <->  -.  (
2 ^ ( k  +  1 ) ) 
||  N ) )
5449, 53anbi12d 473 . . . . . . . . 9  |-  ( m  =  k  ->  (
( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
)  <->  ( ( 2 ^ k )  ||  N  /\  -.  ( 2 ^ ( k  +  1 ) )  ||  N ) ) )
5554adantl 277 . . . . . . . 8  |-  ( ( ( ( k  e.  NN  /\  ( N  e.  NN  /\  -.  ( 2 ^ (
k  +  1 ) )  ||  N ) )  /\  ( 2 ^ k )  ||  N )  /\  m  =  k )  -> 
( ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N )  <->  ( (
2 ^ k ) 
||  N  /\  -.  ( 2 ^ (
k  +  1 ) )  ||  N ) ) )
56 simpr 110 . . . . . . . . 9  |-  ( ( ( k  e.  NN  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  (
2 ^ k ) 
||  N )  -> 
( 2 ^ k
)  ||  N )
57 simplrr 536 . . . . . . . . 9  |-  ( ( ( k  e.  NN  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  (
2 ^ k ) 
||  N )  ->  -.  ( 2 ^ (
k  +  1 ) )  ||  N )
5856, 57jca 306 . . . . . . . 8  |-  ( ( ( k  e.  NN  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  (
2 ^ k ) 
||  N )  -> 
( ( 2 ^ k )  ||  N  /\  -.  ( 2 ^ ( k  +  1 ) )  ||  N
) )
5947, 55, 58rspcedvd 2848 . . . . . . 7  |-  ( ( ( k  e.  NN  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )
6059adantllr 481 . . . . . 6  |-  ( ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  ( 2 ^ k
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )
61 simprl 529 . . . . . . . 8  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  ->  N  e.  NN )
6261anim1i 340 . . . . . . 7  |-  ( ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  ( 2 ^ k
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  -.  ( 2 ^ k
)  ||  N )  ->  ( N  e.  NN  /\ 
-.  ( 2 ^ k )  ||  N
) )
63 simpllr 534 . . . . . . 7  |-  ( ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  ( 2 ^ k
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  -.  ( 2 ^ k
)  ||  N )  ->  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )
6462, 63mpd 13 . . . . . 6  |-  ( ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  ( 2 ^ k
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  -.  ( 2 ^ k
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )
65 2nn 9080 . . . . . . . . 9  |-  2  e.  NN
66 simpll 527 . . . . . . . . . 10  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  ->  k  e.  NN )
6766nnnn0d 9229 . . . . . . . . 9  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  ->  k  e.  NN0 )
68 nnexpcl 10533 . . . . . . . . 9  |-  ( ( 2  e.  NN  /\  k  e.  NN0 )  -> 
( 2 ^ k
)  e.  NN )
6965, 67, 68sylancr 414 . . . . . . . 8  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  ->  (
2 ^ k )  e.  NN )
7061nnzd 9374 . . . . . . . 8  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  ->  N  e.  ZZ )
71 dvdsdc 11805 . . . . . . . 8  |-  ( ( ( 2 ^ k
)  e.  NN  /\  N  e.  ZZ )  -> DECID  ( 2 ^ k ) 
||  N )
7269, 70, 71syl2anc 411 . . . . . . 7  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  -> DECID  ( 2 ^ k
)  ||  N )
73 exmiddc 836 . . . . . . 7  |-  (DECID  ( 2 ^ k )  ||  N  ->  ( ( 2 ^ k )  ||  N  \/  -.  (
2 ^ k ) 
||  N ) )
7472, 73syl 14 . . . . . 6  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  ->  (
( 2 ^ k
)  ||  N  \/  -.  ( 2 ^ k
)  ||  N )
)
7560, 64, 74mpjaodan 798 . . . . 5  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N ) )
7675exp31 364 . . . 4  |-  ( k  e.  NN  ->  (
( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )  ->  (
( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
)  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N ) ) ) )
776, 11, 16, 21, 45, 76nnind 8935 . . 3  |-  ( A  e.  NN  ->  (
( N  e.  NN  /\ 
-.  ( 2 ^ A )  ||  N
)  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N ) ) )
78773ad2ant2 1019 . 2  |-  ( ( N  e.  NN  /\  A  e.  NN  /\  -.  ( 2 ^ A
)  ||  N )  ->  ( ( N  e.  NN  /\  -.  (
2 ^ A ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )
791, 78mpd 13 1  |-  ( ( N  e.  NN  /\  A  e.  NN  /\  -.  ( 2 ^ A
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    /\ w3a 978    = wceq 1353    e. wcel 2148   E.wrex 2456   class class class wbr 4004  (class class class)co 5875   0cc0 7811   1c1 7812    + caddc 7814   NNcn 8919   2c2 8970   NN0cn0 9176   ZZcz 9253   ^cexp 10519    || cdvds 11794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-fl 10270  df-mod 10323  df-seqfrec 10446  df-exp 10520  df-dvds 11795
This theorem is referenced by:  pw2dvds  12166
  Copyright terms: Public domain W3C validator