ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw2dvdslemn Unicode version

Theorem pw2dvdslemn 12333
Description: Lemma for pw2dvds 12334. If a natural number has some power of two which does not divide it, there is a highest power of two which does divide it. (Contributed by Jim Kingdon, 14-Nov-2021.)
Assertion
Ref Expression
pw2dvdslemn  |-  ( ( N  e.  NN  /\  A  e.  NN  /\  -.  ( 2 ^ A
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )
Distinct variable group:    m, N
Allowed substitution hint:    A( m)

Proof of Theorem pw2dvdslemn
Dummy variables  w  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpb 997 . 2  |-  ( ( N  e.  NN  /\  A  e.  NN  /\  -.  ( 2 ^ A
)  ||  N )  ->  ( N  e.  NN  /\ 
-.  ( 2 ^ A )  ||  N
) )
2 oveq2 5930 . . . . . . . 8  |-  ( w  =  1  ->  (
2 ^ w )  =  ( 2 ^ 1 ) )
32breq1d 4043 . . . . . . 7  |-  ( w  =  1  ->  (
( 2 ^ w
)  ||  N  <->  ( 2 ^ 1 )  ||  N ) )
43notbid 668 . . . . . 6  |-  ( w  =  1  ->  ( -.  ( 2 ^ w
)  ||  N  <->  -.  (
2 ^ 1 ) 
||  N ) )
54anbi2d 464 . . . . 5  |-  ( w  =  1  ->  (
( N  e.  NN  /\ 
-.  ( 2 ^ w )  ||  N
)  <->  ( N  e.  NN  /\  -.  (
2 ^ 1 ) 
||  N ) ) )
65imbi1d 231 . . . 4  |-  ( w  =  1  ->  (
( ( N  e.  NN  /\  -.  (
2 ^ w ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )  <->  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) ) )
7 oveq2 5930 . . . . . . . 8  |-  ( w  =  k  ->  (
2 ^ w )  =  ( 2 ^ k ) )
87breq1d 4043 . . . . . . 7  |-  ( w  =  k  ->  (
( 2 ^ w
)  ||  N  <->  ( 2 ^ k )  ||  N ) )
98notbid 668 . . . . . 6  |-  ( w  =  k  ->  ( -.  ( 2 ^ w
)  ||  N  <->  -.  (
2 ^ k ) 
||  N ) )
109anbi2d 464 . . . . 5  |-  ( w  =  k  ->  (
( N  e.  NN  /\ 
-.  ( 2 ^ w )  ||  N
)  <->  ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N ) ) )
1110imbi1d 231 . . . 4  |-  ( w  =  k  ->  (
( ( N  e.  NN  /\  -.  (
2 ^ w ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )  <->  ( ( N  e.  NN  /\  -.  ( 2 ^ k
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) ) )
12 oveq2 5930 . . . . . . . 8  |-  ( w  =  ( k  +  1 )  ->  (
2 ^ w )  =  ( 2 ^ ( k  +  1 ) ) )
1312breq1d 4043 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  (
( 2 ^ w
)  ||  N  <->  ( 2 ^ ( k  +  1 ) )  ||  N ) )
1413notbid 668 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  ( -.  ( 2 ^ w
)  ||  N  <->  -.  (
2 ^ ( k  +  1 ) ) 
||  N ) )
1514anbi2d 464 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( N  e.  NN  /\ 
-.  ( 2 ^ w )  ||  N
)  <->  ( N  e.  NN  /\  -.  (
2 ^ ( k  +  1 ) ) 
||  N ) ) )
1615imbi1d 231 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( ( N  e.  NN  /\  -.  (
2 ^ w ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )  <->  ( ( N  e.  NN  /\  -.  ( 2 ^ (
k  +  1 ) )  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) ) )
17 oveq2 5930 . . . . . . . 8  |-  ( w  =  A  ->  (
2 ^ w )  =  ( 2 ^ A ) )
1817breq1d 4043 . . . . . . 7  |-  ( w  =  A  ->  (
( 2 ^ w
)  ||  N  <->  ( 2 ^ A )  ||  N ) )
1918notbid 668 . . . . . 6  |-  ( w  =  A  ->  ( -.  ( 2 ^ w
)  ||  N  <->  -.  (
2 ^ A ) 
||  N ) )
2019anbi2d 464 . . . . 5  |-  ( w  =  A  ->  (
( N  e.  NN  /\ 
-.  ( 2 ^ w )  ||  N
)  <->  ( N  e.  NN  /\  -.  (
2 ^ A ) 
||  N ) ) )
2120imbi1d 231 . . . 4  |-  ( w  =  A  ->  (
( ( N  e.  NN  /\  -.  (
2 ^ w ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )  <->  ( ( N  e.  NN  /\  -.  ( 2 ^ A
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) ) )
22 0nn0 9264 . . . . . 6  |-  0  e.  NN0
2322a1i 9 . . . . 5  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  0  e.  NN0 )
24 oveq2 5930 . . . . . . . 8  |-  ( m  =  0  ->  (
2 ^ m )  =  ( 2 ^ 0 ) )
2524breq1d 4043 . . . . . . 7  |-  ( m  =  0  ->  (
( 2 ^ m
)  ||  N  <->  ( 2 ^ 0 )  ||  N ) )
26 oveq1 5929 . . . . . . . . . 10  |-  ( m  =  0  ->  (
m  +  1 )  =  ( 0  +  1 ) )
2726oveq2d 5938 . . . . . . . . 9  |-  ( m  =  0  ->  (
2 ^ ( m  +  1 ) )  =  ( 2 ^ ( 0  +  1 ) ) )
2827breq1d 4043 . . . . . . . 8  |-  ( m  =  0  ->  (
( 2 ^ (
m  +  1 ) )  ||  N  <->  ( 2 ^ ( 0  +  1 ) )  ||  N ) )
2928notbid 668 . . . . . . 7  |-  ( m  =  0  ->  ( -.  ( 2 ^ (
m  +  1 ) )  ||  N  <->  -.  (
2 ^ ( 0  +  1 ) ) 
||  N ) )
3025, 29anbi12d 473 . . . . . 6  |-  ( m  =  0  ->  (
( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
)  <->  ( ( 2 ^ 0 )  ||  N  /\  -.  ( 2 ^ ( 0  +  1 ) )  ||  N ) ) )
3130adantl 277 . . . . 5  |-  ( ( ( N  e.  NN  /\ 
-.  ( 2 ^ 1 )  ||  N
)  /\  m  = 
0 )  ->  (
( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
)  <->  ( ( 2 ^ 0 )  ||  N  /\  -.  ( 2 ^ ( 0  +  1 ) )  ||  N ) ) )
32 2cnd 9063 . . . . . . . 8  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  2  e.  CC )
3332exp0d 10759 . . . . . . 7  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  ( 2 ^ 0 )  =  1 )
34 simpl 109 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  N  e.  NN )
3534nnzd 9447 . . . . . . . 8  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  N  e.  ZZ )
36 1dvds 11970 . . . . . . . 8  |-  ( N  e.  ZZ  ->  1  ||  N )
3735, 36syl 14 . . . . . . 7  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  1  ||  N
)
3833, 37eqbrtrd 4055 . . . . . 6  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  ( 2 ^ 0 )  ||  N
)
39 simpr 110 . . . . . . 7  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  -.  ( 2 ^ 1 )  ||  N )
40 0p1e1 9104 . . . . . . . . 9  |-  ( 0  +  1 )  =  1
4140oveq2i 5933 . . . . . . . 8  |-  ( 2 ^ ( 0  +  1 ) )  =  ( 2 ^ 1 )
4241breq1i 4040 . . . . . . 7  |-  ( ( 2 ^ ( 0  +  1 ) ) 
||  N  <->  ( 2 ^ 1 )  ||  N )
4339, 42sylnibr 678 . . . . . 6  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  -.  ( 2 ^ ( 0  +  1 ) )  ||  N )
4438, 43jca 306 . . . . 5  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  ( ( 2 ^ 0 )  ||  N  /\  -.  ( 2 ^ ( 0  +  1 ) )  ||  N ) )
4523, 31, 44rspcedvd 2874 . . . 4  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )
46 simpll 527 . . . . . . . . 9  |-  ( ( ( k  e.  NN  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  (
2 ^ k ) 
||  N )  -> 
k  e.  NN )
4746nnnn0d 9302 . . . . . . . 8  |-  ( ( ( k  e.  NN  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  (
2 ^ k ) 
||  N )  -> 
k  e.  NN0 )
48 oveq2 5930 . . . . . . . . . . 11  |-  ( m  =  k  ->  (
2 ^ m )  =  ( 2 ^ k ) )
4948breq1d 4043 . . . . . . . . . 10  |-  ( m  =  k  ->  (
( 2 ^ m
)  ||  N  <->  ( 2 ^ k )  ||  N ) )
50 oveq1 5929 . . . . . . . . . . . . 13  |-  ( m  =  k  ->  (
m  +  1 )  =  ( k  +  1 ) )
5150oveq2d 5938 . . . . . . . . . . . 12  |-  ( m  =  k  ->  (
2 ^ ( m  +  1 ) )  =  ( 2 ^ ( k  +  1 ) ) )
5251breq1d 4043 . . . . . . . . . . 11  |-  ( m  =  k  ->  (
( 2 ^ (
m  +  1 ) )  ||  N  <->  ( 2 ^ ( k  +  1 ) )  ||  N ) )
5352notbid 668 . . . . . . . . . 10  |-  ( m  =  k  ->  ( -.  ( 2 ^ (
m  +  1 ) )  ||  N  <->  -.  (
2 ^ ( k  +  1 ) ) 
||  N ) )
5449, 53anbi12d 473 . . . . . . . . 9  |-  ( m  =  k  ->  (
( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
)  <->  ( ( 2 ^ k )  ||  N  /\  -.  ( 2 ^ ( k  +  1 ) )  ||  N ) ) )
5554adantl 277 . . . . . . . 8  |-  ( ( ( ( k  e.  NN  /\  ( N  e.  NN  /\  -.  ( 2 ^ (
k  +  1 ) )  ||  N ) )  /\  ( 2 ^ k )  ||  N )  /\  m  =  k )  -> 
( ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N )  <->  ( (
2 ^ k ) 
||  N  /\  -.  ( 2 ^ (
k  +  1 ) )  ||  N ) ) )
56 simpr 110 . . . . . . . . 9  |-  ( ( ( k  e.  NN  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  (
2 ^ k ) 
||  N )  -> 
( 2 ^ k
)  ||  N )
57 simplrr 536 . . . . . . . . 9  |-  ( ( ( k  e.  NN  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  (
2 ^ k ) 
||  N )  ->  -.  ( 2 ^ (
k  +  1 ) )  ||  N )
5856, 57jca 306 . . . . . . . 8  |-  ( ( ( k  e.  NN  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  (
2 ^ k ) 
||  N )  -> 
( ( 2 ^ k )  ||  N  /\  -.  ( 2 ^ ( k  +  1 ) )  ||  N
) )
5947, 55, 58rspcedvd 2874 . . . . . . 7  |-  ( ( ( k  e.  NN  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )
6059adantllr 481 . . . . . 6  |-  ( ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  ( 2 ^ k
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )
61 simprl 529 . . . . . . . 8  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  ->  N  e.  NN )
6261anim1i 340 . . . . . . 7  |-  ( ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  ( 2 ^ k
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  -.  ( 2 ^ k
)  ||  N )  ->  ( N  e.  NN  /\ 
-.  ( 2 ^ k )  ||  N
) )
63 simpllr 534 . . . . . . 7  |-  ( ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  ( 2 ^ k
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  -.  ( 2 ^ k
)  ||  N )  ->  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )
6462, 63mpd 13 . . . . . 6  |-  ( ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  ( 2 ^ k
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  -.  ( 2 ^ k
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )
65 2nn 9152 . . . . . . . . 9  |-  2  e.  NN
66 simpll 527 . . . . . . . . . 10  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  ->  k  e.  NN )
6766nnnn0d 9302 . . . . . . . . 9  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  ->  k  e.  NN0 )
68 nnexpcl 10644 . . . . . . . . 9  |-  ( ( 2  e.  NN  /\  k  e.  NN0 )  -> 
( 2 ^ k
)  e.  NN )
6965, 67, 68sylancr 414 . . . . . . . 8  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  ->  (
2 ^ k )  e.  NN )
7061nnzd 9447 . . . . . . . 8  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  ->  N  e.  ZZ )
71 dvdsdc 11963 . . . . . . . 8  |-  ( ( ( 2 ^ k
)  e.  NN  /\  N  e.  ZZ )  -> DECID  ( 2 ^ k ) 
||  N )
7269, 70, 71syl2anc 411 . . . . . . 7  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  -> DECID  ( 2 ^ k
)  ||  N )
73 exmiddc 837 . . . . . . 7  |-  (DECID  ( 2 ^ k )  ||  N  ->  ( ( 2 ^ k )  ||  N  \/  -.  (
2 ^ k ) 
||  N ) )
7472, 73syl 14 . . . . . 6  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  ->  (
( 2 ^ k
)  ||  N  \/  -.  ( 2 ^ k
)  ||  N )
)
7560, 64, 74mpjaodan 799 . . . . 5  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N ) )
7675exp31 364 . . . 4  |-  ( k  e.  NN  ->  (
( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )  ->  (
( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
)  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N ) ) ) )
776, 11, 16, 21, 45, 76nnind 9006 . . 3  |-  ( A  e.  NN  ->  (
( N  e.  NN  /\ 
-.  ( 2 ^ A )  ||  N
)  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N ) ) )
78773ad2ant2 1021 . 2  |-  ( ( N  e.  NN  /\  A  e.  NN  /\  -.  ( 2 ^ A
)  ||  N )  ->  ( ( N  e.  NN  /\  -.  (
2 ^ A ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )
791, 78mpd 13 1  |-  ( ( N  e.  NN  /\  A  e.  NN  /\  -.  ( 2 ^ A
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2167   E.wrex 2476   class class class wbr 4033  (class class class)co 5922   0cc0 7879   1c1 7880    + caddc 7882   NNcn 8990   2c2 9041   NN0cn0 9249   ZZcz 9326   ^cexp 10630    || cdvds 11952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-dvds 11953
This theorem is referenced by:  pw2dvds  12334
  Copyright terms: Public domain W3C validator