ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw2dvdslemn Unicode version

Theorem pw2dvdslemn 11832
Description: Lemma for pw2dvds 11833. If a natural number has some power of two which does not divide it, there is a highest power of two which does divide it. (Contributed by Jim Kingdon, 14-Nov-2021.)
Assertion
Ref Expression
pw2dvdslemn  |-  ( ( N  e.  NN  /\  A  e.  NN  /\  -.  ( 2 ^ A
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )
Distinct variable group:    m, N
Allowed substitution hint:    A( m)

Proof of Theorem pw2dvdslemn
Dummy variables  w  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpb 979 . 2  |-  ( ( N  e.  NN  /\  A  e.  NN  /\  -.  ( 2 ^ A
)  ||  N )  ->  ( N  e.  NN  /\ 
-.  ( 2 ^ A )  ||  N
) )
2 oveq2 5775 . . . . . . . 8  |-  ( w  =  1  ->  (
2 ^ w )  =  ( 2 ^ 1 ) )
32breq1d 3934 . . . . . . 7  |-  ( w  =  1  ->  (
( 2 ^ w
)  ||  N  <->  ( 2 ^ 1 )  ||  N ) )
43notbid 656 . . . . . 6  |-  ( w  =  1  ->  ( -.  ( 2 ^ w
)  ||  N  <->  -.  (
2 ^ 1 ) 
||  N ) )
54anbi2d 459 . . . . 5  |-  ( w  =  1  ->  (
( N  e.  NN  /\ 
-.  ( 2 ^ w )  ||  N
)  <->  ( N  e.  NN  /\  -.  (
2 ^ 1 ) 
||  N ) ) )
65imbi1d 230 . . . 4  |-  ( w  =  1  ->  (
( ( N  e.  NN  /\  -.  (
2 ^ w ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )  <->  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) ) )
7 oveq2 5775 . . . . . . . 8  |-  ( w  =  k  ->  (
2 ^ w )  =  ( 2 ^ k ) )
87breq1d 3934 . . . . . . 7  |-  ( w  =  k  ->  (
( 2 ^ w
)  ||  N  <->  ( 2 ^ k )  ||  N ) )
98notbid 656 . . . . . 6  |-  ( w  =  k  ->  ( -.  ( 2 ^ w
)  ||  N  <->  -.  (
2 ^ k ) 
||  N ) )
109anbi2d 459 . . . . 5  |-  ( w  =  k  ->  (
( N  e.  NN  /\ 
-.  ( 2 ^ w )  ||  N
)  <->  ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N ) ) )
1110imbi1d 230 . . . 4  |-  ( w  =  k  ->  (
( ( N  e.  NN  /\  -.  (
2 ^ w ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )  <->  ( ( N  e.  NN  /\  -.  ( 2 ^ k
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) ) )
12 oveq2 5775 . . . . . . . 8  |-  ( w  =  ( k  +  1 )  ->  (
2 ^ w )  =  ( 2 ^ ( k  +  1 ) ) )
1312breq1d 3934 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  (
( 2 ^ w
)  ||  N  <->  ( 2 ^ ( k  +  1 ) )  ||  N ) )
1413notbid 656 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  ( -.  ( 2 ^ w
)  ||  N  <->  -.  (
2 ^ ( k  +  1 ) ) 
||  N ) )
1514anbi2d 459 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( N  e.  NN  /\ 
-.  ( 2 ^ w )  ||  N
)  <->  ( N  e.  NN  /\  -.  (
2 ^ ( k  +  1 ) ) 
||  N ) ) )
1615imbi1d 230 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( ( N  e.  NN  /\  -.  (
2 ^ w ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )  <->  ( ( N  e.  NN  /\  -.  ( 2 ^ (
k  +  1 ) )  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) ) )
17 oveq2 5775 . . . . . . . 8  |-  ( w  =  A  ->  (
2 ^ w )  =  ( 2 ^ A ) )
1817breq1d 3934 . . . . . . 7  |-  ( w  =  A  ->  (
( 2 ^ w
)  ||  N  <->  ( 2 ^ A )  ||  N ) )
1918notbid 656 . . . . . 6  |-  ( w  =  A  ->  ( -.  ( 2 ^ w
)  ||  N  <->  -.  (
2 ^ A ) 
||  N ) )
2019anbi2d 459 . . . . 5  |-  ( w  =  A  ->  (
( N  e.  NN  /\ 
-.  ( 2 ^ w )  ||  N
)  <->  ( N  e.  NN  /\  -.  (
2 ^ A ) 
||  N ) ) )
2120imbi1d 230 . . . 4  |-  ( w  =  A  ->  (
( ( N  e.  NN  /\  -.  (
2 ^ w ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )  <->  ( ( N  e.  NN  /\  -.  ( 2 ^ A
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) ) )
22 0nn0 8985 . . . . . 6  |-  0  e.  NN0
2322a1i 9 . . . . 5  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  0  e.  NN0 )
24 oveq2 5775 . . . . . . . 8  |-  ( m  =  0  ->  (
2 ^ m )  =  ( 2 ^ 0 ) )
2524breq1d 3934 . . . . . . 7  |-  ( m  =  0  ->  (
( 2 ^ m
)  ||  N  <->  ( 2 ^ 0 )  ||  N ) )
26 oveq1 5774 . . . . . . . . . 10  |-  ( m  =  0  ->  (
m  +  1 )  =  ( 0  +  1 ) )
2726oveq2d 5783 . . . . . . . . 9  |-  ( m  =  0  ->  (
2 ^ ( m  +  1 ) )  =  ( 2 ^ ( 0  +  1 ) ) )
2827breq1d 3934 . . . . . . . 8  |-  ( m  =  0  ->  (
( 2 ^ (
m  +  1 ) )  ||  N  <->  ( 2 ^ ( 0  +  1 ) )  ||  N ) )
2928notbid 656 . . . . . . 7  |-  ( m  =  0  ->  ( -.  ( 2 ^ (
m  +  1 ) )  ||  N  <->  -.  (
2 ^ ( 0  +  1 ) ) 
||  N ) )
3025, 29anbi12d 464 . . . . . 6  |-  ( m  =  0  ->  (
( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
)  <->  ( ( 2 ^ 0 )  ||  N  /\  -.  ( 2 ^ ( 0  +  1 ) )  ||  N ) ) )
3130adantl 275 . . . . 5  |-  ( ( ( N  e.  NN  /\ 
-.  ( 2 ^ 1 )  ||  N
)  /\  m  = 
0 )  ->  (
( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
)  <->  ( ( 2 ^ 0 )  ||  N  /\  -.  ( 2 ^ ( 0  +  1 ) )  ||  N ) ) )
32 2cnd 8786 . . . . . . . 8  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  2  e.  CC )
3332exp0d 10411 . . . . . . 7  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  ( 2 ^ 0 )  =  1 )
34 simpl 108 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  N  e.  NN )
3534nnzd 9165 . . . . . . . 8  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  N  e.  ZZ )
36 1dvds 11496 . . . . . . . 8  |-  ( N  e.  ZZ  ->  1  ||  N )
3735, 36syl 14 . . . . . . 7  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  1  ||  N
)
3833, 37eqbrtrd 3945 . . . . . 6  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  ( 2 ^ 0 )  ||  N
)
39 simpr 109 . . . . . . 7  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  -.  ( 2 ^ 1 )  ||  N )
40 0p1e1 8827 . . . . . . . . 9  |-  ( 0  +  1 )  =  1
4140oveq2i 5778 . . . . . . . 8  |-  ( 2 ^ ( 0  +  1 ) )  =  ( 2 ^ 1 )
4241breq1i 3931 . . . . . . 7  |-  ( ( 2 ^ ( 0  +  1 ) ) 
||  N  <->  ( 2 ^ 1 )  ||  N )
4339, 42sylnibr 666 . . . . . 6  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  -.  ( 2 ^ ( 0  +  1 ) )  ||  N )
4438, 43jca 304 . . . . 5  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  ( ( 2 ^ 0 )  ||  N  /\  -.  ( 2 ^ ( 0  +  1 ) )  ||  N ) )
4523, 31, 44rspcedvd 2790 . . . 4  |-  ( ( N  e.  NN  /\  -.  ( 2 ^ 1 )  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )
46 simpll 518 . . . . . . . . 9  |-  ( ( ( k  e.  NN  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  (
2 ^ k ) 
||  N )  -> 
k  e.  NN )
4746nnnn0d 9023 . . . . . . . 8  |-  ( ( ( k  e.  NN  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  (
2 ^ k ) 
||  N )  -> 
k  e.  NN0 )
48 oveq2 5775 . . . . . . . . . . 11  |-  ( m  =  k  ->  (
2 ^ m )  =  ( 2 ^ k ) )
4948breq1d 3934 . . . . . . . . . 10  |-  ( m  =  k  ->  (
( 2 ^ m
)  ||  N  <->  ( 2 ^ k )  ||  N ) )
50 oveq1 5774 . . . . . . . . . . . . 13  |-  ( m  =  k  ->  (
m  +  1 )  =  ( k  +  1 ) )
5150oveq2d 5783 . . . . . . . . . . . 12  |-  ( m  =  k  ->  (
2 ^ ( m  +  1 ) )  =  ( 2 ^ ( k  +  1 ) ) )
5251breq1d 3934 . . . . . . . . . . 11  |-  ( m  =  k  ->  (
( 2 ^ (
m  +  1 ) )  ||  N  <->  ( 2 ^ ( k  +  1 ) )  ||  N ) )
5352notbid 656 . . . . . . . . . 10  |-  ( m  =  k  ->  ( -.  ( 2 ^ (
m  +  1 ) )  ||  N  <->  -.  (
2 ^ ( k  +  1 ) ) 
||  N ) )
5449, 53anbi12d 464 . . . . . . . . 9  |-  ( m  =  k  ->  (
( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
)  <->  ( ( 2 ^ k )  ||  N  /\  -.  ( 2 ^ ( k  +  1 ) )  ||  N ) ) )
5554adantl 275 . . . . . . . 8  |-  ( ( ( ( k  e.  NN  /\  ( N  e.  NN  /\  -.  ( 2 ^ (
k  +  1 ) )  ||  N ) )  /\  ( 2 ^ k )  ||  N )  /\  m  =  k )  -> 
( ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N )  <->  ( (
2 ^ k ) 
||  N  /\  -.  ( 2 ^ (
k  +  1 ) )  ||  N ) ) )
56 simpr 109 . . . . . . . . 9  |-  ( ( ( k  e.  NN  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  (
2 ^ k ) 
||  N )  -> 
( 2 ^ k
)  ||  N )
57 simplrr 525 . . . . . . . . 9  |-  ( ( ( k  e.  NN  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  (
2 ^ k ) 
||  N )  ->  -.  ( 2 ^ (
k  +  1 ) )  ||  N )
5856, 57jca 304 . . . . . . . 8  |-  ( ( ( k  e.  NN  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  (
2 ^ k ) 
||  N )  -> 
( ( 2 ^ k )  ||  N  /\  -.  ( 2 ^ ( k  +  1 ) )  ||  N
) )
5947, 55, 58rspcedvd 2790 . . . . . . 7  |-  ( ( ( k  e.  NN  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )
6059adantllr 472 . . . . . 6  |-  ( ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  ( 2 ^ k
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )
61 simprl 520 . . . . . . . 8  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  ->  N  e.  NN )
6261anim1i 338 . . . . . . 7  |-  ( ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  ( 2 ^ k
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  -.  ( 2 ^ k
)  ||  N )  ->  ( N  e.  NN  /\ 
-.  ( 2 ^ k )  ||  N
) )
63 simpllr 523 . . . . . . 7  |-  ( ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  ( 2 ^ k
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  -.  ( 2 ^ k
)  ||  N )  ->  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )
6462, 63mpd 13 . . . . . 6  |-  ( ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  ( 2 ^ k
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  /\  -.  ( 2 ^ k
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )
65 2nn 8874 . . . . . . . . 9  |-  2  e.  NN
66 simpll 518 . . . . . . . . . 10  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  ->  k  e.  NN )
6766nnnn0d 9023 . . . . . . . . 9  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  ->  k  e.  NN0 )
68 nnexpcl 10299 . . . . . . . . 9  |-  ( ( 2  e.  NN  /\  k  e.  NN0 )  -> 
( 2 ^ k
)  e.  NN )
6965, 67, 68sylancr 410 . . . . . . . 8  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  ->  (
2 ^ k )  e.  NN )
7061nnzd 9165 . . . . . . . 8  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  ->  N  e.  ZZ )
71 dvdsdc 11490 . . . . . . . 8  |-  ( ( ( 2 ^ k
)  e.  NN  /\  N  e.  ZZ )  -> DECID  ( 2 ^ k ) 
||  N )
7269, 70, 71syl2anc 408 . . . . . . 7  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  -> DECID  ( 2 ^ k
)  ||  N )
73 exmiddc 821 . . . . . . 7  |-  (DECID  ( 2 ^ k )  ||  N  ->  ( ( 2 ^ k )  ||  N  \/  -.  (
2 ^ k ) 
||  N ) )
7472, 73syl 14 . . . . . 6  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  ->  (
( 2 ^ k
)  ||  N  \/  -.  ( 2 ^ k
)  ||  N )
)
7560, 64, 74mpjaodan 787 . . . . 5  |-  ( ( ( k  e.  NN  /\  ( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )  /\  ( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
) )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N ) )
7675exp31 361 . . . 4  |-  ( k  e.  NN  ->  (
( ( N  e.  NN  /\  -.  (
2 ^ k ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )  ->  (
( N  e.  NN  /\ 
-.  ( 2 ^ ( k  +  1 ) )  ||  N
)  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N ) ) ) )
776, 11, 16, 21, 45, 76nnind 8729 . . 3  |-  ( A  e.  NN  ->  (
( N  e.  NN  /\ 
-.  ( 2 ^ A )  ||  N
)  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N ) ) )
78773ad2ant2 1003 . 2  |-  ( ( N  e.  NN  /\  A  e.  NN  /\  -.  ( 2 ^ A
)  ||  N )  ->  ( ( N  e.  NN  /\  -.  (
2 ^ A ) 
||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) ) )
791, 78mpd 13 1  |-  ( ( N  e.  NN  /\  A  e.  NN  /\  -.  ( 2 ^ A
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697  DECID wdc 819    /\ w3a 962    = wceq 1331    e. wcel 1480   E.wrex 2415   class class class wbr 3924  (class class class)co 5767   0cc0 7613   1c1 7614    + caddc 7616   NNcn 8713   2c2 8764   NN0cn0 8970   ZZcz 9047   ^cexp 10285    || cdvds 11482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-fl 10036  df-mod 10089  df-seqfrec 10212  df-exp 10286  df-dvds 11483
This theorem is referenced by:  pw2dvds  11833
  Copyright terms: Public domain W3C validator