| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pw2dvdslemn | Unicode version | ||
| Description: Lemma for pw2dvds 12696. If a natural number has some power of two which does not divide it, there is a highest power of two which does divide it. (Contributed by Jim Kingdon, 14-Nov-2021.) |
| Ref | Expression |
|---|---|
| pw2dvdslemn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpb 1019 |
. 2
| |
| 2 | oveq2 6015 |
. . . . . . . 8
| |
| 3 | 2 | breq1d 4093 |
. . . . . . 7
|
| 4 | 3 | notbid 671 |
. . . . . 6
|
| 5 | 4 | anbi2d 464 |
. . . . 5
|
| 6 | 5 | imbi1d 231 |
. . . 4
|
| 7 | oveq2 6015 |
. . . . . . . 8
| |
| 8 | 7 | breq1d 4093 |
. . . . . . 7
|
| 9 | 8 | notbid 671 |
. . . . . 6
|
| 10 | 9 | anbi2d 464 |
. . . . 5
|
| 11 | 10 | imbi1d 231 |
. . . 4
|
| 12 | oveq2 6015 |
. . . . . . . 8
| |
| 13 | 12 | breq1d 4093 |
. . . . . . 7
|
| 14 | 13 | notbid 671 |
. . . . . 6
|
| 15 | 14 | anbi2d 464 |
. . . . 5
|
| 16 | 15 | imbi1d 231 |
. . . 4
|
| 17 | oveq2 6015 |
. . . . . . . 8
| |
| 18 | 17 | breq1d 4093 |
. . . . . . 7
|
| 19 | 18 | notbid 671 |
. . . . . 6
|
| 20 | 19 | anbi2d 464 |
. . . . 5
|
| 21 | 20 | imbi1d 231 |
. . . 4
|
| 22 | 0nn0 9392 |
. . . . . 6
| |
| 23 | 22 | a1i 9 |
. . . . 5
|
| 24 | oveq2 6015 |
. . . . . . . 8
| |
| 25 | 24 | breq1d 4093 |
. . . . . . 7
|
| 26 | oveq1 6014 |
. . . . . . . . . 10
| |
| 27 | 26 | oveq2d 6023 |
. . . . . . . . 9
|
| 28 | 27 | breq1d 4093 |
. . . . . . . 8
|
| 29 | 28 | notbid 671 |
. . . . . . 7
|
| 30 | 25, 29 | anbi12d 473 |
. . . . . 6
|
| 31 | 30 | adantl 277 |
. . . . 5
|
| 32 | 2cnd 9191 |
. . . . . . . 8
| |
| 33 | 32 | exp0d 10897 |
. . . . . . 7
|
| 34 | simpl 109 |
. . . . . . . . 9
| |
| 35 | 34 | nnzd 9576 |
. . . . . . . 8
|
| 36 | 1dvds 12324 |
. . . . . . . 8
| |
| 37 | 35, 36 | syl 14 |
. . . . . . 7
|
| 38 | 33, 37 | eqbrtrd 4105 |
. . . . . 6
|
| 39 | simpr 110 |
. . . . . . 7
| |
| 40 | 0p1e1 9232 |
. . . . . . . . 9
| |
| 41 | 40 | oveq2i 6018 |
. . . . . . . 8
|
| 42 | 41 | breq1i 4090 |
. . . . . . 7
|
| 43 | 39, 42 | sylnibr 681 |
. . . . . 6
|
| 44 | 38, 43 | jca 306 |
. . . . 5
|
| 45 | 23, 31, 44 | rspcedvd 2913 |
. . . 4
|
| 46 | simpll 527 |
. . . . . . . . 9
| |
| 47 | 46 | nnnn0d 9430 |
. . . . . . . 8
|
| 48 | oveq2 6015 |
. . . . . . . . . . 11
| |
| 49 | 48 | breq1d 4093 |
. . . . . . . . . 10
|
| 50 | oveq1 6014 |
. . . . . . . . . . . . 13
| |
| 51 | 50 | oveq2d 6023 |
. . . . . . . . . . . 12
|
| 52 | 51 | breq1d 4093 |
. . . . . . . . . . 11
|
| 53 | 52 | notbid 671 |
. . . . . . . . . 10
|
| 54 | 49, 53 | anbi12d 473 |
. . . . . . . . 9
|
| 55 | 54 | adantl 277 |
. . . . . . . 8
|
| 56 | simpr 110 |
. . . . . . . . 9
| |
| 57 | simplrr 536 |
. . . . . . . . 9
| |
| 58 | 56, 57 | jca 306 |
. . . . . . . 8
|
| 59 | 47, 55, 58 | rspcedvd 2913 |
. . . . . . 7
|
| 60 | 59 | adantllr 481 |
. . . . . 6
|
| 61 | simprl 529 |
. . . . . . . 8
| |
| 62 | 61 | anim1i 340 |
. . . . . . 7
|
| 63 | simpllr 534 |
. . . . . . 7
| |
| 64 | 62, 63 | mpd 13 |
. . . . . 6
|
| 65 | 2nn 9280 |
. . . . . . . . 9
| |
| 66 | simpll 527 |
. . . . . . . . . 10
| |
| 67 | 66 | nnnn0d 9430 |
. . . . . . . . 9
|
| 68 | nnexpcl 10782 |
. . . . . . . . 9
| |
| 69 | 65, 67, 68 | sylancr 414 |
. . . . . . . 8
|
| 70 | 61 | nnzd 9576 |
. . . . . . . 8
|
| 71 | dvdsdc 12317 |
. . . . . . . 8
| |
| 72 | 69, 70, 71 | syl2anc 411 |
. . . . . . 7
|
| 73 | exmiddc 841 |
. . . . . . 7
| |
| 74 | 72, 73 | syl 14 |
. . . . . 6
|
| 75 | 60, 64, 74 | mpjaodan 803 |
. . . . 5
|
| 76 | 75 | exp31 364 |
. . . 4
|
| 77 | 6, 11, 16, 21, 45, 76 | nnind 9134 |
. . 3
|
| 78 | 77 | 3ad2ant2 1043 |
. 2
|
| 79 | 1, 78 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-n0 9378 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-fl 10498 df-mod 10553 df-seqfrec 10678 df-exp 10769 df-dvds 12307 |
| This theorem is referenced by: pw2dvds 12696 |
| Copyright terms: Public domain | W3C validator |