| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pw2dvdslemn | Unicode version | ||
| Description: Lemma for pw2dvds 12538. If a natural number has some power of two which does not divide it, there is a highest power of two which does divide it. (Contributed by Jim Kingdon, 14-Nov-2021.) |
| Ref | Expression |
|---|---|
| pw2dvdslemn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpb 998 |
. 2
| |
| 2 | oveq2 5962 |
. . . . . . . 8
| |
| 3 | 2 | breq1d 4058 |
. . . . . . 7
|
| 4 | 3 | notbid 669 |
. . . . . 6
|
| 5 | 4 | anbi2d 464 |
. . . . 5
|
| 6 | 5 | imbi1d 231 |
. . . 4
|
| 7 | oveq2 5962 |
. . . . . . . 8
| |
| 8 | 7 | breq1d 4058 |
. . . . . . 7
|
| 9 | 8 | notbid 669 |
. . . . . 6
|
| 10 | 9 | anbi2d 464 |
. . . . 5
|
| 11 | 10 | imbi1d 231 |
. . . 4
|
| 12 | oveq2 5962 |
. . . . . . . 8
| |
| 13 | 12 | breq1d 4058 |
. . . . . . 7
|
| 14 | 13 | notbid 669 |
. . . . . 6
|
| 15 | 14 | anbi2d 464 |
. . . . 5
|
| 16 | 15 | imbi1d 231 |
. . . 4
|
| 17 | oveq2 5962 |
. . . . . . . 8
| |
| 18 | 17 | breq1d 4058 |
. . . . . . 7
|
| 19 | 18 | notbid 669 |
. . . . . 6
|
| 20 | 19 | anbi2d 464 |
. . . . 5
|
| 21 | 20 | imbi1d 231 |
. . . 4
|
| 22 | 0nn0 9323 |
. . . . . 6
| |
| 23 | 22 | a1i 9 |
. . . . 5
|
| 24 | oveq2 5962 |
. . . . . . . 8
| |
| 25 | 24 | breq1d 4058 |
. . . . . . 7
|
| 26 | oveq1 5961 |
. . . . . . . . . 10
| |
| 27 | 26 | oveq2d 5970 |
. . . . . . . . 9
|
| 28 | 27 | breq1d 4058 |
. . . . . . . 8
|
| 29 | 28 | notbid 669 |
. . . . . . 7
|
| 30 | 25, 29 | anbi12d 473 |
. . . . . 6
|
| 31 | 30 | adantl 277 |
. . . . 5
|
| 32 | 2cnd 9122 |
. . . . . . . 8
| |
| 33 | 32 | exp0d 10825 |
. . . . . . 7
|
| 34 | simpl 109 |
. . . . . . . . 9
| |
| 35 | 34 | nnzd 9507 |
. . . . . . . 8
|
| 36 | 1dvds 12166 |
. . . . . . . 8
| |
| 37 | 35, 36 | syl 14 |
. . . . . . 7
|
| 38 | 33, 37 | eqbrtrd 4070 |
. . . . . 6
|
| 39 | simpr 110 |
. . . . . . 7
| |
| 40 | 0p1e1 9163 |
. . . . . . . . 9
| |
| 41 | 40 | oveq2i 5965 |
. . . . . . . 8
|
| 42 | 41 | breq1i 4055 |
. . . . . . 7
|
| 43 | 39, 42 | sylnibr 679 |
. . . . . 6
|
| 44 | 38, 43 | jca 306 |
. . . . 5
|
| 45 | 23, 31, 44 | rspcedvd 2885 |
. . . 4
|
| 46 | simpll 527 |
. . . . . . . . 9
| |
| 47 | 46 | nnnn0d 9361 |
. . . . . . . 8
|
| 48 | oveq2 5962 |
. . . . . . . . . . 11
| |
| 49 | 48 | breq1d 4058 |
. . . . . . . . . 10
|
| 50 | oveq1 5961 |
. . . . . . . . . . . . 13
| |
| 51 | 50 | oveq2d 5970 |
. . . . . . . . . . . 12
|
| 52 | 51 | breq1d 4058 |
. . . . . . . . . . 11
|
| 53 | 52 | notbid 669 |
. . . . . . . . . 10
|
| 54 | 49, 53 | anbi12d 473 |
. . . . . . . . 9
|
| 55 | 54 | adantl 277 |
. . . . . . . 8
|
| 56 | simpr 110 |
. . . . . . . . 9
| |
| 57 | simplrr 536 |
. . . . . . . . 9
| |
| 58 | 56, 57 | jca 306 |
. . . . . . . 8
|
| 59 | 47, 55, 58 | rspcedvd 2885 |
. . . . . . 7
|
| 60 | 59 | adantllr 481 |
. . . . . 6
|
| 61 | simprl 529 |
. . . . . . . 8
| |
| 62 | 61 | anim1i 340 |
. . . . . . 7
|
| 63 | simpllr 534 |
. . . . . . 7
| |
| 64 | 62, 63 | mpd 13 |
. . . . . 6
|
| 65 | 2nn 9211 |
. . . . . . . . 9
| |
| 66 | simpll 527 |
. . . . . . . . . 10
| |
| 67 | 66 | nnnn0d 9361 |
. . . . . . . . 9
|
| 68 | nnexpcl 10710 |
. . . . . . . . 9
| |
| 69 | 65, 67, 68 | sylancr 414 |
. . . . . . . 8
|
| 70 | 61 | nnzd 9507 |
. . . . . . . 8
|
| 71 | dvdsdc 12159 |
. . . . . . . 8
| |
| 72 | 69, 70, 71 | syl2anc 411 |
. . . . . . 7
|
| 73 | exmiddc 838 |
. . . . . . 7
| |
| 74 | 72, 73 | syl 14 |
. . . . . 6
|
| 75 | 60, 64, 74 | mpjaodan 800 |
. . . . 5
|
| 76 | 75 | exp31 364 |
. . . 4
|
| 77 | 6, 11, 16, 21, 45, 76 | nnind 9065 |
. . 3
|
| 78 | 77 | 3ad2ant2 1022 |
. 2
|
| 79 | 1, 78 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-precex 8048 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-apti 8053 ax-pre-ltadd 8054 ax-pre-mulgt0 8055 ax-pre-mulext 8056 ax-arch 8057 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-if 3574 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-po 4348 df-iso 4349 df-iord 4418 df-on 4420 df-ilim 4421 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-recs 6401 df-frec 6487 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-reap 8661 df-ap 8668 df-div 8759 df-inn 9050 df-2 9108 df-n0 9309 df-z 9386 df-uz 9662 df-q 9754 df-rp 9789 df-fl 10426 df-mod 10481 df-seqfrec 10606 df-exp 10697 df-dvds 12149 |
| This theorem is referenced by: pw2dvds 12538 |
| Copyright terms: Public domain | W3C validator |