ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinclemlr Unicode version

Theorem ivthinclemlr 15080
Description: Lemma for ivthinc 15086. The lower cut is rounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
Hypotheses
Ref Expression
ivth.1  |-  ( ph  ->  A  e.  RR )
ivth.2  |-  ( ph  ->  B  e.  RR )
ivth.3  |-  ( ph  ->  U  e.  RR )
ivth.4  |-  ( ph  ->  A  <  B )
ivth.5  |-  ( ph  ->  ( A [,] B
)  C_  D )
ivth.7  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
ivth.8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
ivth.9  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
ivthinc.i  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  <  ( F `  y )
)
ivthinclem.l  |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }
ivthinclem.r  |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) }
Assertion
Ref Expression
ivthinclemlr  |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
Distinct variable groups:    A, r, w   
x, A, y, r    B, r, w    x, B, y    w, F    x, F, y    L, r, x, y    w, U    ph, q,
r, x, y    w, q
Allowed substitution hints:    ph( w)    A( q)    B( q)    D( x, y, w, r, q)    R( x, y, w, r, q)    U( x, y, r, q)    F( r, q)    L( w, q)

Proof of Theorem ivthinclemlr
StepHypRef Expression
1 ivth.1 . . . . . 6  |-  ( ph  ->  A  e.  RR )
21ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  q  e.  ( A [,] B
) )  /\  q  e.  L )  ->  A  e.  RR )
3 ivth.2 . . . . . 6  |-  ( ph  ->  B  e.  RR )
43ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  q  e.  ( A [,] B
) )  /\  q  e.  L )  ->  B  e.  RR )
5 ivth.3 . . . . . 6  |-  ( ph  ->  U  e.  RR )
65ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  q  e.  ( A [,] B
) )  /\  q  e.  L )  ->  U  e.  RR )
7 ivth.4 . . . . . 6  |-  ( ph  ->  A  <  B )
87ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  q  e.  ( A [,] B
) )  /\  q  e.  L )  ->  A  <  B )
9 ivth.5 . . . . . 6  |-  ( ph  ->  ( A [,] B
)  C_  D )
109ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  q  e.  ( A [,] B
) )  /\  q  e.  L )  ->  ( A [,] B )  C_  D )
11 ivth.7 . . . . . 6  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
1211ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  q  e.  ( A [,] B
) )  /\  q  e.  L )  ->  F  e.  ( D -cn-> CC ) )
13 ivth.8 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
1413adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  q  e.  ( A [,] B
) )  /\  x  e.  ( A [,] B
) )  ->  ( F `  x )  e.  RR )
1514adantlr 477 . . . . 5  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  q  e.  L )  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
16 ivth.9 . . . . . 6  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
1716ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  q  e.  ( A [,] B
) )  /\  q  e.  L )  ->  (
( F `  A
)  <  U  /\  U  <  ( F `  B ) ) )
18 ivthinc.i . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  <  ( F `  y )
)
1918adantllr 481 . . . . . 6  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  <  y
) )  ->  ( F `  x )  <  ( F `  y
) )
2019adantllr 481 . . . . 5  |-  ( ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  q  e.  L
)  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  <  y ) )  -> 
( F `  x
)  <  ( F `  y ) )
21 ivthinclem.l . . . . 5  |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }
22 ivthinclem.r . . . . 5  |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) }
23 simpr 110 . . . . 5  |-  ( ( ( ph  /\  q  e.  ( A [,] B
) )  /\  q  e.  L )  ->  q  e.  L )
242, 4, 6, 8, 10, 12, 15, 17, 20, 21, 22, 23ivthinclemlopn 15079 . . . 4  |-  ( ( ( ph  /\  q  e.  ( A [,] B
) )  /\  q  e.  L )  ->  E. r  e.  L  q  <  r )
2524ex 115 . . 3  |-  ( (
ph  /\  q  e.  ( A [,] B ) )  ->  ( q  e.  L  ->  E. r  e.  L  q  <  r ) )
26 simpllr 534 . . . . 5  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  q  e.  ( A [,] B ) )
27 fveq2 5575 . . . . . . . 8  |-  ( x  =  q  ->  ( F `  x )  =  ( F `  q ) )
2827eleq1d 2273 . . . . . . 7  |-  ( x  =  q  ->  (
( F `  x
)  e.  RR  <->  ( F `  q )  e.  RR ) )
2913ralrimiva 2578 . . . . . . . 8  |-  ( ph  ->  A. x  e.  ( A [,] B ) ( F `  x
)  e.  RR )
3029ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  A. x  e.  ( A [,] B ) ( F `  x
)  e.  RR )
3128, 30, 26rspcdva 2881 . . . . . 6  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  ( F `  q )  e.  RR )
32 fveq2 5575 . . . . . . . 8  |-  ( x  =  r  ->  ( F `  x )  =  ( F `  r ) )
3332eleq1d 2273 . . . . . . 7  |-  ( x  =  r  ->  (
( F `  x
)  e.  RR  <->  ( F `  r )  e.  RR ) )
34 fveq2 5575 . . . . . . . . . . 11  |-  ( w  =  r  ->  ( F `  w )  =  ( F `  r ) )
3534breq1d 4053 . . . . . . . . . 10  |-  ( w  =  r  ->  (
( F `  w
)  <  U  <->  ( F `  r )  <  U
) )
3635, 21elrab2 2931 . . . . . . . . 9  |-  ( r  e.  L  <->  ( r  e.  ( A [,] B
)  /\  ( F `  r )  <  U
) )
3736simplbi 274 . . . . . . . 8  |-  ( r  e.  L  ->  r  e.  ( A [,] B
) )
3837ad2antlr 489 . . . . . . 7  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  r  e.  ( A [,] B ) )
3933, 30, 38rspcdva 2881 . . . . . 6  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  ( F `  r )  e.  RR )
405ad3antrrr 492 . . . . . 6  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  U  e.  RR )
41 simpr 110 . . . . . . 7  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  q  <  r
)
42 breq2 4047 . . . . . . . . 9  |-  ( y  =  r  ->  (
q  <  y  <->  q  <  r ) )
43 fveq2 5575 . . . . . . . . . 10  |-  ( y  =  r  ->  ( F `  y )  =  ( F `  r ) )
4443breq2d 4055 . . . . . . . . 9  |-  ( y  =  r  ->  (
( F `  q
)  <  ( F `  y )  <->  ( F `  q )  <  ( F `  r )
) )
4542, 44imbi12d 234 . . . . . . . 8  |-  ( y  =  r  ->  (
( q  <  y  ->  ( F `  q
)  <  ( F `  y ) )  <->  ( q  <  r  ->  ( F `  q )  <  ( F `  r )
) ) )
46 breq1 4046 . . . . . . . . . . 11  |-  ( x  =  q  ->  (
x  <  y  <->  q  <  y ) )
4727breq1d 4053 . . . . . . . . . . 11  |-  ( x  =  q  ->  (
( F `  x
)  <  ( F `  y )  <->  ( F `  q )  <  ( F `  y )
) )
4846, 47imbi12d 234 . . . . . . . . . 10  |-  ( x  =  q  ->  (
( x  <  y  ->  ( F `  x
)  <  ( F `  y ) )  <->  ( q  <  y  ->  ( F `  q )  <  ( F `  y )
) ) )
4948ralbidv 2505 . . . . . . . . 9  |-  ( x  =  q  ->  ( A. y  e.  ( A [,] B ) ( x  <  y  -> 
( F `  x
)  <  ( F `  y ) )  <->  A. y  e.  ( A [,] B
) ( q  < 
y  ->  ( F `  q )  <  ( F `  y )
) ) )
5018expr 375 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  y  e.  ( A [,] B
) )  ->  (
x  <  y  ->  ( F `  x )  <  ( F `  y ) ) )
5150ralrimiva 2578 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  A. y  e.  ( A [,] B
) ( x  < 
y  ->  ( F `  x )  <  ( F `  y )
) )
5251ralrimiva 2578 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( x  <  y  ->  ( F `  x
)  <  ( F `  y ) ) )
5352ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( x  <  y  ->  ( F `  x
)  <  ( F `  y ) ) )
5449, 53, 26rspcdva 2881 . . . . . . . 8  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  A. y  e.  ( A [,] B ) ( q  <  y  ->  ( F `  q
)  <  ( F `  y ) ) )
5545, 54, 38rspcdva 2881 . . . . . . 7  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  ( q  < 
r  ->  ( F `  q )  <  ( F `  r )
) )
5641, 55mpd 13 . . . . . 6  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  ( F `  q )  <  ( F `  r )
)
5736simprbi 275 . . . . . . 7  |-  ( r  e.  L  ->  ( F `  r )  <  U )
5857ad2antlr 489 . . . . . 6  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  ( F `  r )  <  U
)
5931, 39, 40, 56, 58lttrd 8197 . . . . 5  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  ( F `  q )  <  U
)
60 fveq2 5575 . . . . . . 7  |-  ( w  =  q  ->  ( F `  w )  =  ( F `  q ) )
6160breq1d 4053 . . . . . 6  |-  ( w  =  q  ->  (
( F `  w
)  <  U  <->  ( F `  q )  <  U
) )
6261, 21elrab2 2931 . . . . 5  |-  ( q  e.  L  <->  ( q  e.  ( A [,] B
)  /\  ( F `  q )  <  U
) )
6326, 59, 62sylanbrc 417 . . . 4  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  q  e.  L
)
6463rexlimdva2 2625 . . 3  |-  ( (
ph  /\  q  e.  ( A [,] B ) )  ->  ( E. r  e.  L  q  <  r  ->  q  e.  L ) )
6525, 64impbid 129 . 2  |-  ( (
ph  /\  q  e.  ( A [,] B ) )  ->  ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
6665ralrimiva 2578 1  |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   A.wral 2483   E.wrex 2484   {crab 2487    C_ wss 3165   class class class wbr 4043   ` cfv 5270  (class class class)co 5943   CCcc 7922   RRcr 7923    < clt 8106   [,]cicc 10012   -cn->ccncf 15013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-map 6736  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-rp 9775  df-icc 10016  df-seqfrec 10591  df-exp 10682  df-cj 11124  df-re 11125  df-im 11126  df-rsqrt 11280  df-abs 11281  df-cncf 15014
This theorem is referenced by:  ivthinclemex  15085
  Copyright terms: Public domain W3C validator