ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinclemlr Unicode version

Theorem ivthinclemlr 15305
Description: Lemma for ivthinc 15311. The lower cut is rounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
Hypotheses
Ref Expression
ivth.1  |-  ( ph  ->  A  e.  RR )
ivth.2  |-  ( ph  ->  B  e.  RR )
ivth.3  |-  ( ph  ->  U  e.  RR )
ivth.4  |-  ( ph  ->  A  <  B )
ivth.5  |-  ( ph  ->  ( A [,] B
)  C_  D )
ivth.7  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
ivth.8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
ivth.9  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
ivthinc.i  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  <  ( F `  y )
)
ivthinclem.l  |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }
ivthinclem.r  |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) }
Assertion
Ref Expression
ivthinclemlr  |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
Distinct variable groups:    A, r, w   
x, A, y, r    B, r, w    x, B, y    w, F    x, F, y    L, r, x, y    w, U    ph, q,
r, x, y    w, q
Allowed substitution hints:    ph( w)    A( q)    B( q)    D( x, y, w, r, q)    R( x, y, w, r, q)    U( x, y, r, q)    F( r, q)    L( w, q)

Proof of Theorem ivthinclemlr
StepHypRef Expression
1 ivth.1 . . . . . 6  |-  ( ph  ->  A  e.  RR )
21ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  q  e.  ( A [,] B
) )  /\  q  e.  L )  ->  A  e.  RR )
3 ivth.2 . . . . . 6  |-  ( ph  ->  B  e.  RR )
43ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  q  e.  ( A [,] B
) )  /\  q  e.  L )  ->  B  e.  RR )
5 ivth.3 . . . . . 6  |-  ( ph  ->  U  e.  RR )
65ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  q  e.  ( A [,] B
) )  /\  q  e.  L )  ->  U  e.  RR )
7 ivth.4 . . . . . 6  |-  ( ph  ->  A  <  B )
87ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  q  e.  ( A [,] B
) )  /\  q  e.  L )  ->  A  <  B )
9 ivth.5 . . . . . 6  |-  ( ph  ->  ( A [,] B
)  C_  D )
109ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  q  e.  ( A [,] B
) )  /\  q  e.  L )  ->  ( A [,] B )  C_  D )
11 ivth.7 . . . . . 6  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
1211ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  q  e.  ( A [,] B
) )  /\  q  e.  L )  ->  F  e.  ( D -cn-> CC ) )
13 ivth.8 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
1413adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  q  e.  ( A [,] B
) )  /\  x  e.  ( A [,] B
) )  ->  ( F `  x )  e.  RR )
1514adantlr 477 . . . . 5  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  q  e.  L )  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
16 ivth.9 . . . . . 6  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
1716ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  q  e.  ( A [,] B
) )  /\  q  e.  L )  ->  (
( F `  A
)  <  U  /\  U  <  ( F `  B ) ) )
18 ivthinc.i . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  <  ( F `  y )
)
1918adantllr 481 . . . . . 6  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  <  y
) )  ->  ( F `  x )  <  ( F `  y
) )
2019adantllr 481 . . . . 5  |-  ( ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  q  e.  L
)  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  <  y ) )  -> 
( F `  x
)  <  ( F `  y ) )
21 ivthinclem.l . . . . 5  |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }
22 ivthinclem.r . . . . 5  |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) }
23 simpr 110 . . . . 5  |-  ( ( ( ph  /\  q  e.  ( A [,] B
) )  /\  q  e.  L )  ->  q  e.  L )
242, 4, 6, 8, 10, 12, 15, 17, 20, 21, 22, 23ivthinclemlopn 15304 . . . 4  |-  ( ( ( ph  /\  q  e.  ( A [,] B
) )  /\  q  e.  L )  ->  E. r  e.  L  q  <  r )
2524ex 115 . . 3  |-  ( (
ph  /\  q  e.  ( A [,] B ) )  ->  ( q  e.  L  ->  E. r  e.  L  q  <  r ) )
26 simpllr 534 . . . . 5  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  q  e.  ( A [,] B ) )
27 fveq2 5626 . . . . . . . 8  |-  ( x  =  q  ->  ( F `  x )  =  ( F `  q ) )
2827eleq1d 2298 . . . . . . 7  |-  ( x  =  q  ->  (
( F `  x
)  e.  RR  <->  ( F `  q )  e.  RR ) )
2913ralrimiva 2603 . . . . . . . 8  |-  ( ph  ->  A. x  e.  ( A [,] B ) ( F `  x
)  e.  RR )
3029ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  A. x  e.  ( A [,] B ) ( F `  x
)  e.  RR )
3128, 30, 26rspcdva 2912 . . . . . 6  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  ( F `  q )  e.  RR )
32 fveq2 5626 . . . . . . . 8  |-  ( x  =  r  ->  ( F `  x )  =  ( F `  r ) )
3332eleq1d 2298 . . . . . . 7  |-  ( x  =  r  ->  (
( F `  x
)  e.  RR  <->  ( F `  r )  e.  RR ) )
34 fveq2 5626 . . . . . . . . . . 11  |-  ( w  =  r  ->  ( F `  w )  =  ( F `  r ) )
3534breq1d 4092 . . . . . . . . . 10  |-  ( w  =  r  ->  (
( F `  w
)  <  U  <->  ( F `  r )  <  U
) )
3635, 21elrab2 2962 . . . . . . . . 9  |-  ( r  e.  L  <->  ( r  e.  ( A [,] B
)  /\  ( F `  r )  <  U
) )
3736simplbi 274 . . . . . . . 8  |-  ( r  e.  L  ->  r  e.  ( A [,] B
) )
3837ad2antlr 489 . . . . . . 7  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  r  e.  ( A [,] B ) )
3933, 30, 38rspcdva 2912 . . . . . 6  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  ( F `  r )  e.  RR )
405ad3antrrr 492 . . . . . 6  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  U  e.  RR )
41 simpr 110 . . . . . . 7  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  q  <  r
)
42 breq2 4086 . . . . . . . . 9  |-  ( y  =  r  ->  (
q  <  y  <->  q  <  r ) )
43 fveq2 5626 . . . . . . . . . 10  |-  ( y  =  r  ->  ( F `  y )  =  ( F `  r ) )
4443breq2d 4094 . . . . . . . . 9  |-  ( y  =  r  ->  (
( F `  q
)  <  ( F `  y )  <->  ( F `  q )  <  ( F `  r )
) )
4542, 44imbi12d 234 . . . . . . . 8  |-  ( y  =  r  ->  (
( q  <  y  ->  ( F `  q
)  <  ( F `  y ) )  <->  ( q  <  r  ->  ( F `  q )  <  ( F `  r )
) ) )
46 breq1 4085 . . . . . . . . . . 11  |-  ( x  =  q  ->  (
x  <  y  <->  q  <  y ) )
4727breq1d 4092 . . . . . . . . . . 11  |-  ( x  =  q  ->  (
( F `  x
)  <  ( F `  y )  <->  ( F `  q )  <  ( F `  y )
) )
4846, 47imbi12d 234 . . . . . . . . . 10  |-  ( x  =  q  ->  (
( x  <  y  ->  ( F `  x
)  <  ( F `  y ) )  <->  ( q  <  y  ->  ( F `  q )  <  ( F `  y )
) ) )
4948ralbidv 2530 . . . . . . . . 9  |-  ( x  =  q  ->  ( A. y  e.  ( A [,] B ) ( x  <  y  -> 
( F `  x
)  <  ( F `  y ) )  <->  A. y  e.  ( A [,] B
) ( q  < 
y  ->  ( F `  q )  <  ( F `  y )
) ) )
5018expr 375 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  y  e.  ( A [,] B
) )  ->  (
x  <  y  ->  ( F `  x )  <  ( F `  y ) ) )
5150ralrimiva 2603 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  A. y  e.  ( A [,] B
) ( x  < 
y  ->  ( F `  x )  <  ( F `  y )
) )
5251ralrimiva 2603 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( x  <  y  ->  ( F `  x
)  <  ( F `  y ) ) )
5352ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( x  <  y  ->  ( F `  x
)  <  ( F `  y ) ) )
5449, 53, 26rspcdva 2912 . . . . . . . 8  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  A. y  e.  ( A [,] B ) ( q  <  y  ->  ( F `  q
)  <  ( F `  y ) ) )
5545, 54, 38rspcdva 2912 . . . . . . 7  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  ( q  < 
r  ->  ( F `  q )  <  ( F `  r )
) )
5641, 55mpd 13 . . . . . 6  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  ( F `  q )  <  ( F `  r )
)
5736simprbi 275 . . . . . . 7  |-  ( r  e.  L  ->  ( F `  r )  <  U )
5857ad2antlr 489 . . . . . 6  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  ( F `  r )  <  U
)
5931, 39, 40, 56, 58lttrd 8268 . . . . 5  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  ( F `  q )  <  U
)
60 fveq2 5626 . . . . . . 7  |-  ( w  =  q  ->  ( F `  w )  =  ( F `  q ) )
6160breq1d 4092 . . . . . 6  |-  ( w  =  q  ->  (
( F `  w
)  <  U  <->  ( F `  q )  <  U
) )
6261, 21elrab2 2962 . . . . 5  |-  ( q  e.  L  <->  ( q  e.  ( A [,] B
)  /\  ( F `  q )  <  U
) )
6326, 59, 62sylanbrc 417 . . . 4  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  q  e.  L
)
6463rexlimdva2 2651 . . 3  |-  ( (
ph  /\  q  e.  ( A [,] B ) )  ->  ( E. r  e.  L  q  <  r  ->  q  e.  L ) )
6525, 64impbid 129 . 2  |-  ( (
ph  /\  q  e.  ( A [,] B ) )  ->  ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
6665ralrimiva 2603 1  |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   {crab 2512    C_ wss 3197   class class class wbr 4082   ` cfv 5317  (class class class)co 6000   CCcc 7993   RRcr 7994    < clt 8177   [,]cicc 10083   -cn->ccncf 15238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-map 6795  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-rp 9846  df-icc 10087  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-cncf 15239
This theorem is referenced by:  ivthinclemex  15310
  Copyright terms: Public domain W3C validator