ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinclemlr Unicode version

Theorem ivthinclemlr 12823
Description: Lemma for ivthinc 12829. The lower cut is rounded. (Contributed by Jim Kingdon, 18-Feb-2024.)
Hypotheses
Ref Expression
ivth.1  |-  ( ph  ->  A  e.  RR )
ivth.2  |-  ( ph  ->  B  e.  RR )
ivth.3  |-  ( ph  ->  U  e.  RR )
ivth.4  |-  ( ph  ->  A  <  B )
ivth.5  |-  ( ph  ->  ( A [,] B
)  C_  D )
ivth.7  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
ivth.8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
ivth.9  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
ivthinc.i  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  <  ( F `  y )
)
ivthinclem.l  |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }
ivthinclem.r  |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) }
Assertion
Ref Expression
ivthinclemlr  |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
Distinct variable groups:    A, r, w   
x, A, y, r    B, r, w    x, B, y    w, F    x, F, y    L, r, x, y    w, U    ph, q,
r, x, y    w, q
Allowed substitution hints:    ph( w)    A( q)    B( q)    D( x, y, w, r, q)    R( x, y, w, r, q)    U( x, y, r, q)    F( r, q)    L( w, q)

Proof of Theorem ivthinclemlr
StepHypRef Expression
1 ivth.1 . . . . . 6  |-  ( ph  ->  A  e.  RR )
21ad2antrr 480 . . . . 5  |-  ( ( ( ph  /\  q  e.  ( A [,] B
) )  /\  q  e.  L )  ->  A  e.  RR )
3 ivth.2 . . . . . 6  |-  ( ph  ->  B  e.  RR )
43ad2antrr 480 . . . . 5  |-  ( ( ( ph  /\  q  e.  ( A [,] B
) )  /\  q  e.  L )  ->  B  e.  RR )
5 ivth.3 . . . . . 6  |-  ( ph  ->  U  e.  RR )
65ad2antrr 480 . . . . 5  |-  ( ( ( ph  /\  q  e.  ( A [,] B
) )  /\  q  e.  L )  ->  U  e.  RR )
7 ivth.4 . . . . . 6  |-  ( ph  ->  A  <  B )
87ad2antrr 480 . . . . 5  |-  ( ( ( ph  /\  q  e.  ( A [,] B
) )  /\  q  e.  L )  ->  A  <  B )
9 ivth.5 . . . . . 6  |-  ( ph  ->  ( A [,] B
)  C_  D )
109ad2antrr 480 . . . . 5  |-  ( ( ( ph  /\  q  e.  ( A [,] B
) )  /\  q  e.  L )  ->  ( A [,] B )  C_  D )
11 ivth.7 . . . . . 6  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
1211ad2antrr 480 . . . . 5  |-  ( ( ( ph  /\  q  e.  ( A [,] B
) )  /\  q  e.  L )  ->  F  e.  ( D -cn-> CC ) )
13 ivth.8 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
1413adantlr 469 . . . . . 6  |-  ( ( ( ph  /\  q  e.  ( A [,] B
) )  /\  x  e.  ( A [,] B
) )  ->  ( F `  x )  e.  RR )
1514adantlr 469 . . . . 5  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  q  e.  L )  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
16 ivth.9 . . . . . 6  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
1716ad2antrr 480 . . . . 5  |-  ( ( ( ph  /\  q  e.  ( A [,] B
) )  /\  q  e.  L )  ->  (
( F `  A
)  <  U  /\  U  <  ( F `  B ) ) )
18 ivthinc.i . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  <  ( F `  y )
)
1918adantllr 473 . . . . . 6  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  <  y
) )  ->  ( F `  x )  <  ( F `  y
) )
2019adantllr 473 . . . . 5  |-  ( ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  q  e.  L
)  /\  x  e.  ( A [,] B ) )  /\  ( y  e.  ( A [,] B )  /\  x  <  y ) )  -> 
( F `  x
)  <  ( F `  y ) )
21 ivthinclem.l . . . . 5  |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }
22 ivthinclem.r . . . . 5  |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) }
23 simpr 109 . . . . 5  |-  ( ( ( ph  /\  q  e.  ( A [,] B
) )  /\  q  e.  L )  ->  q  e.  L )
242, 4, 6, 8, 10, 12, 15, 17, 20, 21, 22, 23ivthinclemlopn 12822 . . . 4  |-  ( ( ( ph  /\  q  e.  ( A [,] B
) )  /\  q  e.  L )  ->  E. r  e.  L  q  <  r )
2524ex 114 . . 3  |-  ( (
ph  /\  q  e.  ( A [,] B ) )  ->  ( q  e.  L  ->  E. r  e.  L  q  <  r ) )
26 simpllr 524 . . . . 5  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  q  e.  ( A [,] B ) )
27 fveq2 5429 . . . . . . . 8  |-  ( x  =  q  ->  ( F `  x )  =  ( F `  q ) )
2827eleq1d 2209 . . . . . . 7  |-  ( x  =  q  ->  (
( F `  x
)  e.  RR  <->  ( F `  q )  e.  RR ) )
2913ralrimiva 2508 . . . . . . . 8  |-  ( ph  ->  A. x  e.  ( A [,] B ) ( F `  x
)  e.  RR )
3029ad3antrrr 484 . . . . . . 7  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  A. x  e.  ( A [,] B ) ( F `  x
)  e.  RR )
3128, 30, 26rspcdva 2798 . . . . . 6  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  ( F `  q )  e.  RR )
32 fveq2 5429 . . . . . . . 8  |-  ( x  =  r  ->  ( F `  x )  =  ( F `  r ) )
3332eleq1d 2209 . . . . . . 7  |-  ( x  =  r  ->  (
( F `  x
)  e.  RR  <->  ( F `  r )  e.  RR ) )
34 fveq2 5429 . . . . . . . . . . 11  |-  ( w  =  r  ->  ( F `  w )  =  ( F `  r ) )
3534breq1d 3947 . . . . . . . . . 10  |-  ( w  =  r  ->  (
( F `  w
)  <  U  <->  ( F `  r )  <  U
) )
3635, 21elrab2 2847 . . . . . . . . 9  |-  ( r  e.  L  <->  ( r  e.  ( A [,] B
)  /\  ( F `  r )  <  U
) )
3736simplbi 272 . . . . . . . 8  |-  ( r  e.  L  ->  r  e.  ( A [,] B
) )
3837ad2antlr 481 . . . . . . 7  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  r  e.  ( A [,] B ) )
3933, 30, 38rspcdva 2798 . . . . . 6  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  ( F `  r )  e.  RR )
405ad3antrrr 484 . . . . . 6  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  U  e.  RR )
41 simpr 109 . . . . . . 7  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  q  <  r
)
42 breq2 3941 . . . . . . . . 9  |-  ( y  =  r  ->  (
q  <  y  <->  q  <  r ) )
43 fveq2 5429 . . . . . . . . . 10  |-  ( y  =  r  ->  ( F `  y )  =  ( F `  r ) )
4443breq2d 3949 . . . . . . . . 9  |-  ( y  =  r  ->  (
( F `  q
)  <  ( F `  y )  <->  ( F `  q )  <  ( F `  r )
) )
4542, 44imbi12d 233 . . . . . . . 8  |-  ( y  =  r  ->  (
( q  <  y  ->  ( F `  q
)  <  ( F `  y ) )  <->  ( q  <  r  ->  ( F `  q )  <  ( F `  r )
) ) )
46 breq1 3940 . . . . . . . . . . 11  |-  ( x  =  q  ->  (
x  <  y  <->  q  <  y ) )
4727breq1d 3947 . . . . . . . . . . 11  |-  ( x  =  q  ->  (
( F `  x
)  <  ( F `  y )  <->  ( F `  q )  <  ( F `  y )
) )
4846, 47imbi12d 233 . . . . . . . . . 10  |-  ( x  =  q  ->  (
( x  <  y  ->  ( F `  x
)  <  ( F `  y ) )  <->  ( q  <  y  ->  ( F `  q )  <  ( F `  y )
) ) )
4948ralbidv 2438 . . . . . . . . 9  |-  ( x  =  q  ->  ( A. y  e.  ( A [,] B ) ( x  <  y  -> 
( F `  x
)  <  ( F `  y ) )  <->  A. y  e.  ( A [,] B
) ( q  < 
y  ->  ( F `  q )  <  ( F `  y )
) ) )
5018expr 373 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  y  e.  ( A [,] B
) )  ->  (
x  <  y  ->  ( F `  x )  <  ( F `  y ) ) )
5150ralrimiva 2508 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  A. y  e.  ( A [,] B
) ( x  < 
y  ->  ( F `  x )  <  ( F `  y )
) )
5251ralrimiva 2508 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( x  <  y  ->  ( F `  x
)  <  ( F `  y ) ) )
5352ad3antrrr 484 . . . . . . . . 9  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  A. x  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( x  <  y  ->  ( F `  x
)  <  ( F `  y ) ) )
5449, 53, 26rspcdva 2798 . . . . . . . 8  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  A. y  e.  ( A [,] B ) ( q  <  y  ->  ( F `  q
)  <  ( F `  y ) ) )
5545, 54, 38rspcdva 2798 . . . . . . 7  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  ( q  < 
r  ->  ( F `  q )  <  ( F `  r )
) )
5641, 55mpd 13 . . . . . 6  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  ( F `  q )  <  ( F `  r )
)
5736simprbi 273 . . . . . . 7  |-  ( r  e.  L  ->  ( F `  r )  <  U )
5857ad2antlr 481 . . . . . 6  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  ( F `  r )  <  U
)
5931, 39, 40, 56, 58lttrd 7912 . . . . 5  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  ( F `  q )  <  U
)
60 fveq2 5429 . . . . . . 7  |-  ( w  =  q  ->  ( F `  w )  =  ( F `  q ) )
6160breq1d 3947 . . . . . 6  |-  ( w  =  q  ->  (
( F `  w
)  <  U  <->  ( F `  q )  <  U
) )
6261, 21elrab2 2847 . . . . 5  |-  ( q  e.  L  <->  ( q  e.  ( A [,] B
)  /\  ( F `  q )  <  U
) )
6326, 59, 62sylanbrc 414 . . . 4  |-  ( ( ( ( ph  /\  q  e.  ( A [,] B ) )  /\  r  e.  L )  /\  q  <  r )  ->  q  e.  L
)
6463rexlimdva2 2555 . . 3  |-  ( (
ph  /\  q  e.  ( A [,] B ) )  ->  ( E. r  e.  L  q  <  r  ->  q  e.  L ) )
6525, 64impbid 128 . 2  |-  ( (
ph  /\  q  e.  ( A [,] B ) )  ->  ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
6665ralrimiva 2508 1  |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   A.wral 2417   E.wrex 2418   {crab 2421    C_ wss 3076   class class class wbr 3937   ` cfv 5131  (class class class)co 5782   CCcc 7642   RRcr 7643    < clt 7824   [,]cicc 9704   -cn->ccncf 12765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-map 6552  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-rp 9471  df-icc 9708  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-cncf 12766
This theorem is referenced by:  ivthinclemex  12828
  Copyright terms: Public domain W3C validator