ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climshftlemg Unicode version

Theorem climshftlemg 11445
Description: A shifted function converges if the original function converges. (Contributed by Mario Carneiro, 5-Nov-2013.)
Assertion
Ref Expression
climshftlemg  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  A  -> 
( F  shift  M )  ~~>  A ) )

Proof of Theorem climshftlemg
Dummy variables  k  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zaddcl 9357 . . . . . . . 8  |-  ( ( k  e.  ZZ  /\  M  e.  ZZ )  ->  ( k  +  M
)  e.  ZZ )
21ancoms 268 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ )  ->  ( k  +  M
)  e.  ZZ )
32adantlr 477 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  k  e.  ZZ )  ->  ( k  +  M )  e.  ZZ )
4 eluzsub 9622 . . . . . . . . . . . 12  |-  ( ( k  e.  ZZ  /\  M  e.  ZZ  /\  n  e.  ( ZZ>= `  ( k  +  M ) ) )  ->  ( n  -  M )  e.  (
ZZ>= `  k ) )
543com12 1209 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ  /\  n  e.  ( ZZ>= `  ( k  +  M ) ) )  ->  ( n  -  M )  e.  (
ZZ>= `  k ) )
653expa 1205 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  k  e.  ZZ )  /\  n  e.  (
ZZ>= `  ( k  +  M ) ) )  ->  ( n  -  M )  e.  (
ZZ>= `  k ) )
7 fveq2 5554 . . . . . . . . . . . . 13  |-  ( m  =  ( n  -  M )  ->  ( F `  m )  =  ( F `  ( n  -  M
) ) )
87eleq1d 2262 . . . . . . . . . . . 12  |-  ( m  =  ( n  -  M )  ->  (
( F `  m
)  e.  CC  <->  ( F `  ( n  -  M
) )  e.  CC ) )
97oveq1d 5933 . . . . . . . . . . . . . 14  |-  ( m  =  ( n  -  M )  ->  (
( F `  m
)  -  A )  =  ( ( F `
 ( n  -  M ) )  -  A ) )
109fveq2d 5558 . . . . . . . . . . . . 13  |-  ( m  =  ( n  -  M )  ->  ( abs `  ( ( F `
 m )  -  A ) )  =  ( abs `  (
( F `  (
n  -  M ) )  -  A ) ) )
1110breq1d 4039 . . . . . . . . . . . 12  |-  ( m  =  ( n  -  M )  ->  (
( abs `  (
( F `  m
)  -  A ) )  <  x  <->  ( abs `  ( ( F `  ( n  -  M
) )  -  A
) )  <  x
) )
128, 11anbi12d 473 . . . . . . . . . . 11  |-  ( m  =  ( n  -  M )  ->  (
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  <-> 
( ( F `  ( n  -  M
) )  e.  CC  /\  ( abs `  (
( F `  (
n  -  M ) )  -  A ) )  <  x ) ) )
1312rspcv 2860 . . . . . . . . . 10  |-  ( ( n  -  M )  e.  ( ZZ>= `  k
)  ->  ( A. m  e.  ( ZZ>= `  k ) ( ( F `  m )  e.  CC  /\  ( abs `  ( ( F `
 m )  -  A ) )  < 
x )  ->  (
( F `  (
n  -  M ) )  e.  CC  /\  ( abs `  ( ( F `  ( n  -  M ) )  -  A ) )  <  x ) ) )
146, 13syl 14 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  k  e.  ZZ )  /\  n  e.  (
ZZ>= `  ( k  +  M ) ) )  ->  ( A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  ->  ( ( F `
 ( n  -  M ) )  e.  CC  /\  ( abs `  ( ( F `  ( n  -  M
) )  -  A
) )  <  x
) ) )
1514adantllr 481 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  k  e.  ZZ )  /\  n  e.  ( ZZ>= `  ( k  +  M ) ) )  ->  ( A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  ->  ( ( F `
 ( n  -  M ) )  e.  CC  /\  ( abs `  ( ( F `  ( n  -  M
) )  -  A
) )  <  x
) ) )
16 simplr 528 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  n  e.  (
ZZ>= `  ( k  +  M ) ) )  ->  F  e.  V
)
17 zcn 9322 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  M  e.  CC )
1817ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  n  e.  (
ZZ>= `  ( k  +  M ) ) )  ->  M  e.  CC )
19 eluzelcn 9603 . . . . . . . . . . 11  |-  ( n  e.  ( ZZ>= `  (
k  +  M ) )  ->  n  e.  CC )
2019adantl 277 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  n  e.  (
ZZ>= `  ( k  +  M ) ) )  ->  n  e.  CC )
21 shftvalg 10980 . . . . . . . . . . . 12  |-  ( ( F  e.  V  /\  M  e.  CC  /\  n  e.  CC )  ->  (
( F  shift  M ) `
 n )  =  ( F `  (
n  -  M ) ) )
2221eleq1d 2262 . . . . . . . . . . 11  |-  ( ( F  e.  V  /\  M  e.  CC  /\  n  e.  CC )  ->  (
( ( F  shift  M ) `  n )  e.  CC  <->  ( F `  ( n  -  M
) )  e.  CC ) )
2321oveq1d 5933 . . . . . . . . . . . . 13  |-  ( ( F  e.  V  /\  M  e.  CC  /\  n  e.  CC )  ->  (
( ( F  shift  M ) `  n )  -  A )  =  ( ( F `  ( n  -  M
) )  -  A
) )
2423fveq2d 5558 . . . . . . . . . . . 12  |-  ( ( F  e.  V  /\  M  e.  CC  /\  n  e.  CC )  ->  ( abs `  ( ( ( F  shift  M ) `  n )  -  A
) )  =  ( abs `  ( ( F `  ( n  -  M ) )  -  A ) ) )
2524breq1d 4039 . . . . . . . . . . 11  |-  ( ( F  e.  V  /\  M  e.  CC  /\  n  e.  CC )  ->  (
( abs `  (
( ( F  shift  M ) `  n )  -  A ) )  <  x  <->  ( abs `  ( ( F `  ( n  -  M
) )  -  A
) )  <  x
) )
2622, 25anbi12d 473 . . . . . . . . . 10  |-  ( ( F  e.  V  /\  M  e.  CC  /\  n  e.  CC )  ->  (
( ( ( F 
shift  M ) `  n
)  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `
 n )  -  A ) )  < 
x )  <->  ( ( F `  ( n  -  M ) )  e.  CC  /\  ( abs `  ( ( F `  ( n  -  M
) )  -  A
) )  <  x
) ) )
2716, 18, 20, 26syl3anc 1249 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  n  e.  (
ZZ>= `  ( k  +  M ) ) )  ->  ( ( ( ( F  shift  M ) `
 n )  e.  CC  /\  ( abs `  ( ( ( F 
shift  M ) `  n
)  -  A ) )  <  x )  <-> 
( ( F `  ( n  -  M
) )  e.  CC  /\  ( abs `  (
( F `  (
n  -  M ) )  -  A ) )  <  x ) ) )
2827adantlr 477 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  k  e.  ZZ )  /\  n  e.  ( ZZ>= `  ( k  +  M ) ) )  ->  ( ( ( ( F  shift  M ) `
 n )  e.  CC  /\  ( abs `  ( ( ( F 
shift  M ) `  n
)  -  A ) )  <  x )  <-> 
( ( F `  ( n  -  M
) )  e.  CC  /\  ( abs `  (
( F `  (
n  -  M ) )  -  A ) )  <  x ) ) )
2915, 28sylibrd 169 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  k  e.  ZZ )  /\  n  e.  ( ZZ>= `  ( k  +  M ) ) )  ->  ( A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  ->  ( ( ( F  shift  M ) `  n )  e.  CC  /\  ( abs `  (
( ( F  shift  M ) `  n )  -  A ) )  <  x ) ) )
3029ralrimdva 2574 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  k  e.  ZZ )  ->  ( A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  ->  A. n  e.  (
ZZ>= `  ( k  +  M ) ) ( ( ( F  shift  M ) `  n )  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `  n )  -  A
) )  <  x
) ) )
31 fveq2 5554 . . . . . . . 8  |-  ( m  =  ( k  +  M )  ->  ( ZZ>=
`  m )  =  ( ZZ>= `  ( k  +  M ) ) )
3231raleqdv 2696 . . . . . . 7  |-  ( m  =  ( k  +  M )  ->  ( A. n  e.  ( ZZ>=
`  m ) ( ( ( F  shift  M ) `  n )  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `  n )  -  A
) )  <  x
)  <->  A. n  e.  (
ZZ>= `  ( k  +  M ) ) ( ( ( F  shift  M ) `  n )  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `  n )  -  A
) )  <  x
) ) )
3332rspcev 2864 . . . . . 6  |-  ( ( ( k  +  M
)  e.  ZZ  /\  A. n  e.  ( ZZ>= `  ( k  +  M
) ) ( ( ( F  shift  M ) `
 n )  e.  CC  /\  ( abs `  ( ( ( F 
shift  M ) `  n
)  -  A ) )  <  x ) )  ->  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m )
( ( ( F 
shift  M ) `  n
)  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `
 n )  -  A ) )  < 
x ) )
343, 30, 33syl6an 1445 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  k  e.  ZZ )  ->  ( A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  ->  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m ) ( ( ( F  shift  M ) `
 n )  e.  CC  /\  ( abs `  ( ( ( F 
shift  M ) `  n
)  -  A ) )  <  x ) ) )
3534rexlimdva 2611 . . . 4  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( E. k  e.  ZZ  A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  ->  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m ) ( ( ( F  shift  M ) `
 n )  e.  CC  /\  ( abs `  ( ( ( F 
shift  M ) `  n
)  -  A ) )  <  x ) ) )
3635ralimdv 2562 . . 3  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( A. x  e.  RR+  E. k  e.  ZZ  A. m  e.  ( ZZ>= `  k ) ( ( F `  m )  e.  CC  /\  ( abs `  ( ( F `
 m )  -  A ) )  < 
x )  ->  A. x  e.  RR+  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m )
( ( ( F 
shift  M ) `  n
)  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `
 n )  -  A ) )  < 
x ) ) )
3736anim2d 337 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( ( A  e.  CC  /\  A. x  e.  RR+  E. k  e.  ZZ  A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x ) )  ->  ( A  e.  CC  /\  A. x  e.  RR+  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m )
( ( ( F 
shift  M ) `  n
)  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `
 n )  -  A ) )  < 
x ) ) ) )
38 simpr 110 . . 3  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  F  e.  V )
39 eqidd 2194 . . 3  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  m  e.  ZZ )  ->  ( F `  m )  =  ( F `  m ) )
4038, 39clim 11424 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. k  e.  ZZ  A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x ) ) ) )
41 ovshftex 10963 . . . . 5  |-  ( ( F  e.  V  /\  M  e.  CC )  ->  ( F  shift  M )  e.  _V )
4241ancoms 268 . . . 4  |-  ( ( M  e.  CC  /\  F  e.  V )  ->  ( F  shift  M )  e.  _V )
4317, 42sylan 283 . . 3  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  shift  M )  e.  _V )
44 eqidd 2194 . . 3  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  n  e.  ZZ )  ->  ( ( F 
shift  M ) `  n
)  =  ( ( F  shift  M ) `  n ) )
4543, 44clim 11424 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( ( F  shift  M )  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m )
( ( ( F 
shift  M ) `  n
)  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `
 n )  -  A ) )  < 
x ) ) ) )
4637, 40, 453imtr4d 203 1  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  A  -> 
( F  shift  M )  ~~>  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   _Vcvv 2760   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   CCcc 7870    + caddc 7875    < clt 8054    - cmin 8190   ZZcz 9317   ZZ>=cuz 9592   RR+crp 9719    shift cshi 10958   abscabs 11141    ~~> cli 11421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-shft 10959  df-clim 11422
This theorem is referenced by:  climshft  11447
  Copyright terms: Public domain W3C validator