ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climshftlemg Unicode version

Theorem climshftlemg 11071
Description: A shifted function converges if the original function converges. (Contributed by Mario Carneiro, 5-Nov-2013.)
Assertion
Ref Expression
climshftlemg  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  A  -> 
( F  shift  M )  ~~>  A ) )

Proof of Theorem climshftlemg
Dummy variables  k  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zaddcl 9094 . . . . . . . 8  |-  ( ( k  e.  ZZ  /\  M  e.  ZZ )  ->  ( k  +  M
)  e.  ZZ )
21ancoms 266 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ )  ->  ( k  +  M
)  e.  ZZ )
32adantlr 468 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  k  e.  ZZ )  ->  ( k  +  M )  e.  ZZ )
4 eluzsub 9355 . . . . . . . . . . . 12  |-  ( ( k  e.  ZZ  /\  M  e.  ZZ  /\  n  e.  ( ZZ>= `  ( k  +  M ) ) )  ->  ( n  -  M )  e.  (
ZZ>= `  k ) )
543com12 1185 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ  /\  n  e.  ( ZZ>= `  ( k  +  M ) ) )  ->  ( n  -  M )  e.  (
ZZ>= `  k ) )
653expa 1181 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  k  e.  ZZ )  /\  n  e.  (
ZZ>= `  ( k  +  M ) ) )  ->  ( n  -  M )  e.  (
ZZ>= `  k ) )
7 fveq2 5421 . . . . . . . . . . . . 13  |-  ( m  =  ( n  -  M )  ->  ( F `  m )  =  ( F `  ( n  -  M
) ) )
87eleq1d 2208 . . . . . . . . . . . 12  |-  ( m  =  ( n  -  M )  ->  (
( F `  m
)  e.  CC  <->  ( F `  ( n  -  M
) )  e.  CC ) )
97oveq1d 5789 . . . . . . . . . . . . . 14  |-  ( m  =  ( n  -  M )  ->  (
( F `  m
)  -  A )  =  ( ( F `
 ( n  -  M ) )  -  A ) )
109fveq2d 5425 . . . . . . . . . . . . 13  |-  ( m  =  ( n  -  M )  ->  ( abs `  ( ( F `
 m )  -  A ) )  =  ( abs `  (
( F `  (
n  -  M ) )  -  A ) ) )
1110breq1d 3939 . . . . . . . . . . . 12  |-  ( m  =  ( n  -  M )  ->  (
( abs `  (
( F `  m
)  -  A ) )  <  x  <->  ( abs `  ( ( F `  ( n  -  M
) )  -  A
) )  <  x
) )
128, 11anbi12d 464 . . . . . . . . . . 11  |-  ( m  =  ( n  -  M )  ->  (
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  <-> 
( ( F `  ( n  -  M
) )  e.  CC  /\  ( abs `  (
( F `  (
n  -  M ) )  -  A ) )  <  x ) ) )
1312rspcv 2785 . . . . . . . . . 10  |-  ( ( n  -  M )  e.  ( ZZ>= `  k
)  ->  ( A. m  e.  ( ZZ>= `  k ) ( ( F `  m )  e.  CC  /\  ( abs `  ( ( F `
 m )  -  A ) )  < 
x )  ->  (
( F `  (
n  -  M ) )  e.  CC  /\  ( abs `  ( ( F `  ( n  -  M ) )  -  A ) )  <  x ) ) )
146, 13syl 14 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  k  e.  ZZ )  /\  n  e.  (
ZZ>= `  ( k  +  M ) ) )  ->  ( A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  ->  ( ( F `
 ( n  -  M ) )  e.  CC  /\  ( abs `  ( ( F `  ( n  -  M
) )  -  A
) )  <  x
) ) )
1514adantllr 472 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  k  e.  ZZ )  /\  n  e.  ( ZZ>= `  ( k  +  M ) ) )  ->  ( A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  ->  ( ( F `
 ( n  -  M ) )  e.  CC  /\  ( abs `  ( ( F `  ( n  -  M
) )  -  A
) )  <  x
) ) )
16 simplr 519 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  n  e.  (
ZZ>= `  ( k  +  M ) ) )  ->  F  e.  V
)
17 zcn 9059 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  M  e.  CC )
1817ad2antrr 479 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  n  e.  (
ZZ>= `  ( k  +  M ) ) )  ->  M  e.  CC )
19 eluzelcn 9337 . . . . . . . . . . 11  |-  ( n  e.  ( ZZ>= `  (
k  +  M ) )  ->  n  e.  CC )
2019adantl 275 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  n  e.  (
ZZ>= `  ( k  +  M ) ) )  ->  n  e.  CC )
21 shftvalg 10608 . . . . . . . . . . . 12  |-  ( ( F  e.  V  /\  M  e.  CC  /\  n  e.  CC )  ->  (
( F  shift  M ) `
 n )  =  ( F `  (
n  -  M ) ) )
2221eleq1d 2208 . . . . . . . . . . 11  |-  ( ( F  e.  V  /\  M  e.  CC  /\  n  e.  CC )  ->  (
( ( F  shift  M ) `  n )  e.  CC  <->  ( F `  ( n  -  M
) )  e.  CC ) )
2321oveq1d 5789 . . . . . . . . . . . . 13  |-  ( ( F  e.  V  /\  M  e.  CC  /\  n  e.  CC )  ->  (
( ( F  shift  M ) `  n )  -  A )  =  ( ( F `  ( n  -  M
) )  -  A
) )
2423fveq2d 5425 . . . . . . . . . . . 12  |-  ( ( F  e.  V  /\  M  e.  CC  /\  n  e.  CC )  ->  ( abs `  ( ( ( F  shift  M ) `  n )  -  A
) )  =  ( abs `  ( ( F `  ( n  -  M ) )  -  A ) ) )
2524breq1d 3939 . . . . . . . . . . 11  |-  ( ( F  e.  V  /\  M  e.  CC  /\  n  e.  CC )  ->  (
( abs `  (
( ( F  shift  M ) `  n )  -  A ) )  <  x  <->  ( abs `  ( ( F `  ( n  -  M
) )  -  A
) )  <  x
) )
2622, 25anbi12d 464 . . . . . . . . . 10  |-  ( ( F  e.  V  /\  M  e.  CC  /\  n  e.  CC )  ->  (
( ( ( F 
shift  M ) `  n
)  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `
 n )  -  A ) )  < 
x )  <->  ( ( F `  ( n  -  M ) )  e.  CC  /\  ( abs `  ( ( F `  ( n  -  M
) )  -  A
) )  <  x
) ) )
2716, 18, 20, 26syl3anc 1216 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  n  e.  (
ZZ>= `  ( k  +  M ) ) )  ->  ( ( ( ( F  shift  M ) `
 n )  e.  CC  /\  ( abs `  ( ( ( F 
shift  M ) `  n
)  -  A ) )  <  x )  <-> 
( ( F `  ( n  -  M
) )  e.  CC  /\  ( abs `  (
( F `  (
n  -  M ) )  -  A ) )  <  x ) ) )
2827adantlr 468 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  k  e.  ZZ )  /\  n  e.  ( ZZ>= `  ( k  +  M ) ) )  ->  ( ( ( ( F  shift  M ) `
 n )  e.  CC  /\  ( abs `  ( ( ( F 
shift  M ) `  n
)  -  A ) )  <  x )  <-> 
( ( F `  ( n  -  M
) )  e.  CC  /\  ( abs `  (
( F `  (
n  -  M ) )  -  A ) )  <  x ) ) )
2915, 28sylibrd 168 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  k  e.  ZZ )  /\  n  e.  ( ZZ>= `  ( k  +  M ) ) )  ->  ( A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  ->  ( ( ( F  shift  M ) `  n )  e.  CC  /\  ( abs `  (
( ( F  shift  M ) `  n )  -  A ) )  <  x ) ) )
3029ralrimdva 2512 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  k  e.  ZZ )  ->  ( A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  ->  A. n  e.  (
ZZ>= `  ( k  +  M ) ) ( ( ( F  shift  M ) `  n )  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `  n )  -  A
) )  <  x
) ) )
31 fveq2 5421 . . . . . . . 8  |-  ( m  =  ( k  +  M )  ->  ( ZZ>=
`  m )  =  ( ZZ>= `  ( k  +  M ) ) )
3231raleqdv 2632 . . . . . . 7  |-  ( m  =  ( k  +  M )  ->  ( A. n  e.  ( ZZ>=
`  m ) ( ( ( F  shift  M ) `  n )  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `  n )  -  A
) )  <  x
)  <->  A. n  e.  (
ZZ>= `  ( k  +  M ) ) ( ( ( F  shift  M ) `  n )  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `  n )  -  A
) )  <  x
) ) )
3332rspcev 2789 . . . . . 6  |-  ( ( ( k  +  M
)  e.  ZZ  /\  A. n  e.  ( ZZ>= `  ( k  +  M
) ) ( ( ( F  shift  M ) `
 n )  e.  CC  /\  ( abs `  ( ( ( F 
shift  M ) `  n
)  -  A ) )  <  x ) )  ->  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m )
( ( ( F 
shift  M ) `  n
)  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `
 n )  -  A ) )  < 
x ) )
343, 30, 33syl6an 1410 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  k  e.  ZZ )  ->  ( A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  ->  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m ) ( ( ( F  shift  M ) `
 n )  e.  CC  /\  ( abs `  ( ( ( F 
shift  M ) `  n
)  -  A ) )  <  x ) ) )
3534rexlimdva 2549 . . . 4  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( E. k  e.  ZZ  A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  ->  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m ) ( ( ( F  shift  M ) `
 n )  e.  CC  /\  ( abs `  ( ( ( F 
shift  M ) `  n
)  -  A ) )  <  x ) ) )
3635ralimdv 2500 . . 3  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( A. x  e.  RR+  E. k  e.  ZZ  A. m  e.  ( ZZ>= `  k ) ( ( F `  m )  e.  CC  /\  ( abs `  ( ( F `
 m )  -  A ) )  < 
x )  ->  A. x  e.  RR+  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m )
( ( ( F 
shift  M ) `  n
)  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `
 n )  -  A ) )  < 
x ) ) )
3736anim2d 335 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( ( A  e.  CC  /\  A. x  e.  RR+  E. k  e.  ZZ  A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x ) )  ->  ( A  e.  CC  /\  A. x  e.  RR+  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m )
( ( ( F 
shift  M ) `  n
)  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `
 n )  -  A ) )  < 
x ) ) ) )
38 simpr 109 . . 3  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  F  e.  V )
39 eqidd 2140 . . 3  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  m  e.  ZZ )  ->  ( F `  m )  =  ( F `  m ) )
4038, 39clim 11050 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. k  e.  ZZ  A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x ) ) ) )
41 ovshftex 10591 . . . . 5  |-  ( ( F  e.  V  /\  M  e.  CC )  ->  ( F  shift  M )  e.  _V )
4241ancoms 266 . . . 4  |-  ( ( M  e.  CC  /\  F  e.  V )  ->  ( F  shift  M )  e.  _V )
4317, 42sylan 281 . . 3  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  shift  M )  e.  _V )
44 eqidd 2140 . . 3  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  n  e.  ZZ )  ->  ( ( F 
shift  M ) `  n
)  =  ( ( F  shift  M ) `  n ) )
4543, 44clim 11050 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( ( F  shift  M )  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m )
( ( ( F 
shift  M ) `  n
)  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `
 n )  -  A ) )  < 
x ) ) ) )
4637, 40, 453imtr4d 202 1  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  A  -> 
( F  shift  M )  ~~>  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   _Vcvv 2686   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   CCcc 7618    + caddc 7623    < clt 7800    - cmin 7933   ZZcz 9054   ZZ>=cuz 9326   RR+crp 9441    shift cshi 10586   abscabs 10769    ~~> cli 11047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-shft 10587  df-clim 11048
This theorem is referenced by:  climshft  11073
  Copyright terms: Public domain W3C validator