ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climshftlemg Unicode version

Theorem climshftlemg 11484
Description: A shifted function converges if the original function converges. (Contributed by Mario Carneiro, 5-Nov-2013.)
Assertion
Ref Expression
climshftlemg  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  A  -> 
( F  shift  M )  ~~>  A ) )

Proof of Theorem climshftlemg
Dummy variables  k  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zaddcl 9383 . . . . . . . 8  |-  ( ( k  e.  ZZ  /\  M  e.  ZZ )  ->  ( k  +  M
)  e.  ZZ )
21ancoms 268 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ )  ->  ( k  +  M
)  e.  ZZ )
32adantlr 477 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  k  e.  ZZ )  ->  ( k  +  M )  e.  ZZ )
4 eluzsub 9648 . . . . . . . . . . . 12  |-  ( ( k  e.  ZZ  /\  M  e.  ZZ  /\  n  e.  ( ZZ>= `  ( k  +  M ) ) )  ->  ( n  -  M )  e.  (
ZZ>= `  k ) )
543com12 1209 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ  /\  n  e.  ( ZZ>= `  ( k  +  M ) ) )  ->  ( n  -  M )  e.  (
ZZ>= `  k ) )
653expa 1205 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  k  e.  ZZ )  /\  n  e.  (
ZZ>= `  ( k  +  M ) ) )  ->  ( n  -  M )  e.  (
ZZ>= `  k ) )
7 fveq2 5561 . . . . . . . . . . . . 13  |-  ( m  =  ( n  -  M )  ->  ( F `  m )  =  ( F `  ( n  -  M
) ) )
87eleq1d 2265 . . . . . . . . . . . 12  |-  ( m  =  ( n  -  M )  ->  (
( F `  m
)  e.  CC  <->  ( F `  ( n  -  M
) )  e.  CC ) )
97oveq1d 5940 . . . . . . . . . . . . . 14  |-  ( m  =  ( n  -  M )  ->  (
( F `  m
)  -  A )  =  ( ( F `
 ( n  -  M ) )  -  A ) )
109fveq2d 5565 . . . . . . . . . . . . 13  |-  ( m  =  ( n  -  M )  ->  ( abs `  ( ( F `
 m )  -  A ) )  =  ( abs `  (
( F `  (
n  -  M ) )  -  A ) ) )
1110breq1d 4044 . . . . . . . . . . . 12  |-  ( m  =  ( n  -  M )  ->  (
( abs `  (
( F `  m
)  -  A ) )  <  x  <->  ( abs `  ( ( F `  ( n  -  M
) )  -  A
) )  <  x
) )
128, 11anbi12d 473 . . . . . . . . . . 11  |-  ( m  =  ( n  -  M )  ->  (
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  <-> 
( ( F `  ( n  -  M
) )  e.  CC  /\  ( abs `  (
( F `  (
n  -  M ) )  -  A ) )  <  x ) ) )
1312rspcv 2864 . . . . . . . . . 10  |-  ( ( n  -  M )  e.  ( ZZ>= `  k
)  ->  ( A. m  e.  ( ZZ>= `  k ) ( ( F `  m )  e.  CC  /\  ( abs `  ( ( F `
 m )  -  A ) )  < 
x )  ->  (
( F `  (
n  -  M ) )  e.  CC  /\  ( abs `  ( ( F `  ( n  -  M ) )  -  A ) )  <  x ) ) )
146, 13syl 14 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  k  e.  ZZ )  /\  n  e.  (
ZZ>= `  ( k  +  M ) ) )  ->  ( A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  ->  ( ( F `
 ( n  -  M ) )  e.  CC  /\  ( abs `  ( ( F `  ( n  -  M
) )  -  A
) )  <  x
) ) )
1514adantllr 481 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  k  e.  ZZ )  /\  n  e.  ( ZZ>= `  ( k  +  M ) ) )  ->  ( A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  ->  ( ( F `
 ( n  -  M ) )  e.  CC  /\  ( abs `  ( ( F `  ( n  -  M
) )  -  A
) )  <  x
) ) )
16 simplr 528 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  n  e.  (
ZZ>= `  ( k  +  M ) ) )  ->  F  e.  V
)
17 zcn 9348 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  M  e.  CC )
1817ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  n  e.  (
ZZ>= `  ( k  +  M ) ) )  ->  M  e.  CC )
19 eluzelcn 9629 . . . . . . . . . . 11  |-  ( n  e.  ( ZZ>= `  (
k  +  M ) )  ->  n  e.  CC )
2019adantl 277 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  n  e.  (
ZZ>= `  ( k  +  M ) ) )  ->  n  e.  CC )
21 shftvalg 11018 . . . . . . . . . . . 12  |-  ( ( F  e.  V  /\  M  e.  CC  /\  n  e.  CC )  ->  (
( F  shift  M ) `
 n )  =  ( F `  (
n  -  M ) ) )
2221eleq1d 2265 . . . . . . . . . . 11  |-  ( ( F  e.  V  /\  M  e.  CC  /\  n  e.  CC )  ->  (
( ( F  shift  M ) `  n )  e.  CC  <->  ( F `  ( n  -  M
) )  e.  CC ) )
2321oveq1d 5940 . . . . . . . . . . . . 13  |-  ( ( F  e.  V  /\  M  e.  CC  /\  n  e.  CC )  ->  (
( ( F  shift  M ) `  n )  -  A )  =  ( ( F `  ( n  -  M
) )  -  A
) )
2423fveq2d 5565 . . . . . . . . . . . 12  |-  ( ( F  e.  V  /\  M  e.  CC  /\  n  e.  CC )  ->  ( abs `  ( ( ( F  shift  M ) `  n )  -  A
) )  =  ( abs `  ( ( F `  ( n  -  M ) )  -  A ) ) )
2524breq1d 4044 . . . . . . . . . . 11  |-  ( ( F  e.  V  /\  M  e.  CC  /\  n  e.  CC )  ->  (
( abs `  (
( ( F  shift  M ) `  n )  -  A ) )  <  x  <->  ( abs `  ( ( F `  ( n  -  M
) )  -  A
) )  <  x
) )
2622, 25anbi12d 473 . . . . . . . . . 10  |-  ( ( F  e.  V  /\  M  e.  CC  /\  n  e.  CC )  ->  (
( ( ( F 
shift  M ) `  n
)  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `
 n )  -  A ) )  < 
x )  <->  ( ( F `  ( n  -  M ) )  e.  CC  /\  ( abs `  ( ( F `  ( n  -  M
) )  -  A
) )  <  x
) ) )
2716, 18, 20, 26syl3anc 1249 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  n  e.  (
ZZ>= `  ( k  +  M ) ) )  ->  ( ( ( ( F  shift  M ) `
 n )  e.  CC  /\  ( abs `  ( ( ( F 
shift  M ) `  n
)  -  A ) )  <  x )  <-> 
( ( F `  ( n  -  M
) )  e.  CC  /\  ( abs `  (
( F `  (
n  -  M ) )  -  A ) )  <  x ) ) )
2827adantlr 477 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  k  e.  ZZ )  /\  n  e.  ( ZZ>= `  ( k  +  M ) ) )  ->  ( ( ( ( F  shift  M ) `
 n )  e.  CC  /\  ( abs `  ( ( ( F 
shift  M ) `  n
)  -  A ) )  <  x )  <-> 
( ( F `  ( n  -  M
) )  e.  CC  /\  ( abs `  (
( F `  (
n  -  M ) )  -  A ) )  <  x ) ) )
2915, 28sylibrd 169 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  k  e.  ZZ )  /\  n  e.  ( ZZ>= `  ( k  +  M ) ) )  ->  ( A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  ->  ( ( ( F  shift  M ) `  n )  e.  CC  /\  ( abs `  (
( ( F  shift  M ) `  n )  -  A ) )  <  x ) ) )
3029ralrimdva 2577 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  k  e.  ZZ )  ->  ( A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  ->  A. n  e.  (
ZZ>= `  ( k  +  M ) ) ( ( ( F  shift  M ) `  n )  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `  n )  -  A
) )  <  x
) ) )
31 fveq2 5561 . . . . . . . 8  |-  ( m  =  ( k  +  M )  ->  ( ZZ>=
`  m )  =  ( ZZ>= `  ( k  +  M ) ) )
3231raleqdv 2699 . . . . . . 7  |-  ( m  =  ( k  +  M )  ->  ( A. n  e.  ( ZZ>=
`  m ) ( ( ( F  shift  M ) `  n )  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `  n )  -  A
) )  <  x
)  <->  A. n  e.  (
ZZ>= `  ( k  +  M ) ) ( ( ( F  shift  M ) `  n )  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `  n )  -  A
) )  <  x
) ) )
3332rspcev 2868 . . . . . 6  |-  ( ( ( k  +  M
)  e.  ZZ  /\  A. n  e.  ( ZZ>= `  ( k  +  M
) ) ( ( ( F  shift  M ) `
 n )  e.  CC  /\  ( abs `  ( ( ( F 
shift  M ) `  n
)  -  A ) )  <  x ) )  ->  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m )
( ( ( F 
shift  M ) `  n
)  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `
 n )  -  A ) )  < 
x ) )
343, 30, 33syl6an 1445 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  k  e.  ZZ )  ->  ( A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  ->  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m ) ( ( ( F  shift  M ) `
 n )  e.  CC  /\  ( abs `  ( ( ( F 
shift  M ) `  n
)  -  A ) )  <  x ) ) )
3534rexlimdva 2614 . . . 4  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( E. k  e.  ZZ  A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  ->  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m ) ( ( ( F  shift  M ) `
 n )  e.  CC  /\  ( abs `  ( ( ( F 
shift  M ) `  n
)  -  A ) )  <  x ) ) )
3635ralimdv 2565 . . 3  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( A. x  e.  RR+  E. k  e.  ZZ  A. m  e.  ( ZZ>= `  k ) ( ( F `  m )  e.  CC  /\  ( abs `  ( ( F `
 m )  -  A ) )  < 
x )  ->  A. x  e.  RR+  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m )
( ( ( F 
shift  M ) `  n
)  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `
 n )  -  A ) )  < 
x ) ) )
3736anim2d 337 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( ( A  e.  CC  /\  A. x  e.  RR+  E. k  e.  ZZ  A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x ) )  ->  ( A  e.  CC  /\  A. x  e.  RR+  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m )
( ( ( F 
shift  M ) `  n
)  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `
 n )  -  A ) )  < 
x ) ) ) )
38 simpr 110 . . 3  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  F  e.  V )
39 eqidd 2197 . . 3  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  m  e.  ZZ )  ->  ( F `  m )  =  ( F `  m ) )
4038, 39clim 11463 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. k  e.  ZZ  A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x ) ) ) )
41 ovshftex 11001 . . . . 5  |-  ( ( F  e.  V  /\  M  e.  CC )  ->  ( F  shift  M )  e.  _V )
4241ancoms 268 . . . 4  |-  ( ( M  e.  CC  /\  F  e.  V )  ->  ( F  shift  M )  e.  _V )
4317, 42sylan 283 . . 3  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  shift  M )  e.  _V )
44 eqidd 2197 . . 3  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  n  e.  ZZ )  ->  ( ( F 
shift  M ) `  n
)  =  ( ( F  shift  M ) `  n ) )
4543, 44clim 11463 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( ( F  shift  M )  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m )
( ( ( F 
shift  M ) `  n
)  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `
 n )  -  A ) )  < 
x ) ) ) )
4637, 40, 453imtr4d 203 1  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  A  -> 
( F  shift  M )  ~~>  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476   _Vcvv 2763   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   CCcc 7894    + caddc 7899    < clt 8078    - cmin 8214   ZZcz 9343   ZZ>=cuz 9618   RR+crp 9745    shift cshi 10996   abscabs 11179    ~~> cli 11460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-shft 10997  df-clim 11461
This theorem is referenced by:  climshft  11486
  Copyright terms: Public domain W3C validator