Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > climshftlemg | Unicode version |
Description: A shifted function converges if the original function converges. (Contributed by Mario Carneiro, 5-Nov-2013.) |
Ref | Expression |
---|---|
climshftlemg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zaddcl 9252 | . . . . . . . 8 | |
2 | 1 | ancoms 266 | . . . . . . 7 |
3 | 2 | adantlr 474 | . . . . . 6 |
4 | eluzsub 9516 | . . . . . . . . . . . 12 | |
5 | 4 | 3com12 1202 | . . . . . . . . . . 11 |
6 | 5 | 3expa 1198 | . . . . . . . . . 10 |
7 | fveq2 5496 | . . . . . . . . . . . . 13 | |
8 | 7 | eleq1d 2239 | . . . . . . . . . . . 12 |
9 | 7 | oveq1d 5868 | . . . . . . . . . . . . . 14 |
10 | 9 | fveq2d 5500 | . . . . . . . . . . . . 13 |
11 | 10 | breq1d 3999 | . . . . . . . . . . . 12 |
12 | 8, 11 | anbi12d 470 | . . . . . . . . . . 11 |
13 | 12 | rspcv 2830 | . . . . . . . . . 10 |
14 | 6, 13 | syl 14 | . . . . . . . . 9 |
15 | 14 | adantllr 478 | . . . . . . . 8 |
16 | simplr 525 | . . . . . . . . . 10 | |
17 | zcn 9217 | . . . . . . . . . . 11 | |
18 | 17 | ad2antrr 485 | . . . . . . . . . 10 |
19 | eluzelcn 9498 | . . . . . . . . . . 11 | |
20 | 19 | adantl 275 | . . . . . . . . . 10 |
21 | shftvalg 10800 | . . . . . . . . . . . 12 | |
22 | 21 | eleq1d 2239 | . . . . . . . . . . 11 |
23 | 21 | oveq1d 5868 | . . . . . . . . . . . . 13 |
24 | 23 | fveq2d 5500 | . . . . . . . . . . . 12 |
25 | 24 | breq1d 3999 | . . . . . . . . . . 11 |
26 | 22, 25 | anbi12d 470 | . . . . . . . . . 10 |
27 | 16, 18, 20, 26 | syl3anc 1233 | . . . . . . . . 9 |
28 | 27 | adantlr 474 | . . . . . . . 8 |
29 | 15, 28 | sylibrd 168 | . . . . . . 7 |
30 | 29 | ralrimdva 2550 | . . . . . 6 |
31 | fveq2 5496 | . . . . . . . 8 | |
32 | 31 | raleqdv 2671 | . . . . . . 7 |
33 | 32 | rspcev 2834 | . . . . . 6 |
34 | 3, 30, 33 | syl6an 1427 | . . . . 5 |
35 | 34 | rexlimdva 2587 | . . . 4 |
36 | 35 | ralimdv 2538 | . . 3 |
37 | 36 | anim2d 335 | . 2 |
38 | simpr 109 | . . 3 | |
39 | eqidd 2171 | . . 3 | |
40 | 38, 39 | clim 11244 | . 2 |
41 | ovshftex 10783 | . . . . 5 | |
42 | 41 | ancoms 266 | . . . 4 |
43 | 17, 42 | sylan 281 | . . 3 |
44 | eqidd 2171 | . . 3 | |
45 | 43, 44 | clim 11244 | . 2 |
46 | 37, 40, 45 | 3imtr4d 202 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wral 2448 wrex 2449 cvv 2730 class class class wbr 3989 cfv 5198 (class class class)co 5853 cc 7772 caddc 7777 clt 7954 cmin 8090 cz 9212 cuz 9487 crp 9610 cshi 10778 cabs 10961 cli 11241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-shft 10779 df-clim 11242 |
This theorem is referenced by: climshft 11267 |
Copyright terms: Public domain | W3C validator |