ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climshftlemg Unicode version

Theorem climshftlemg 11294
Description: A shifted function converges if the original function converges. (Contributed by Mario Carneiro, 5-Nov-2013.)
Assertion
Ref Expression
climshftlemg  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  A  -> 
( F  shift  M )  ~~>  A ) )

Proof of Theorem climshftlemg
Dummy variables  k  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zaddcl 9282 . . . . . . . 8  |-  ( ( k  e.  ZZ  /\  M  e.  ZZ )  ->  ( k  +  M
)  e.  ZZ )
21ancoms 268 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ )  ->  ( k  +  M
)  e.  ZZ )
32adantlr 477 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  k  e.  ZZ )  ->  ( k  +  M )  e.  ZZ )
4 eluzsub 9546 . . . . . . . . . . . 12  |-  ( ( k  e.  ZZ  /\  M  e.  ZZ  /\  n  e.  ( ZZ>= `  ( k  +  M ) ) )  ->  ( n  -  M )  e.  (
ZZ>= `  k ) )
543com12 1207 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ  /\  n  e.  ( ZZ>= `  ( k  +  M ) ) )  ->  ( n  -  M )  e.  (
ZZ>= `  k ) )
653expa 1203 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  k  e.  ZZ )  /\  n  e.  (
ZZ>= `  ( k  +  M ) ) )  ->  ( n  -  M )  e.  (
ZZ>= `  k ) )
7 fveq2 5511 . . . . . . . . . . . . 13  |-  ( m  =  ( n  -  M )  ->  ( F `  m )  =  ( F `  ( n  -  M
) ) )
87eleq1d 2246 . . . . . . . . . . . 12  |-  ( m  =  ( n  -  M )  ->  (
( F `  m
)  e.  CC  <->  ( F `  ( n  -  M
) )  e.  CC ) )
97oveq1d 5884 . . . . . . . . . . . . . 14  |-  ( m  =  ( n  -  M )  ->  (
( F `  m
)  -  A )  =  ( ( F `
 ( n  -  M ) )  -  A ) )
109fveq2d 5515 . . . . . . . . . . . . 13  |-  ( m  =  ( n  -  M )  ->  ( abs `  ( ( F `
 m )  -  A ) )  =  ( abs `  (
( F `  (
n  -  M ) )  -  A ) ) )
1110breq1d 4010 . . . . . . . . . . . 12  |-  ( m  =  ( n  -  M )  ->  (
( abs `  (
( F `  m
)  -  A ) )  <  x  <->  ( abs `  ( ( F `  ( n  -  M
) )  -  A
) )  <  x
) )
128, 11anbi12d 473 . . . . . . . . . . 11  |-  ( m  =  ( n  -  M )  ->  (
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  <-> 
( ( F `  ( n  -  M
) )  e.  CC  /\  ( abs `  (
( F `  (
n  -  M ) )  -  A ) )  <  x ) ) )
1312rspcv 2837 . . . . . . . . . 10  |-  ( ( n  -  M )  e.  ( ZZ>= `  k
)  ->  ( A. m  e.  ( ZZ>= `  k ) ( ( F `  m )  e.  CC  /\  ( abs `  ( ( F `
 m )  -  A ) )  < 
x )  ->  (
( F `  (
n  -  M ) )  e.  CC  /\  ( abs `  ( ( F `  ( n  -  M ) )  -  A ) )  <  x ) ) )
146, 13syl 14 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  k  e.  ZZ )  /\  n  e.  (
ZZ>= `  ( k  +  M ) ) )  ->  ( A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  ->  ( ( F `
 ( n  -  M ) )  e.  CC  /\  ( abs `  ( ( F `  ( n  -  M
) )  -  A
) )  <  x
) ) )
1514adantllr 481 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  k  e.  ZZ )  /\  n  e.  ( ZZ>= `  ( k  +  M ) ) )  ->  ( A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  ->  ( ( F `
 ( n  -  M ) )  e.  CC  /\  ( abs `  ( ( F `  ( n  -  M
) )  -  A
) )  <  x
) ) )
16 simplr 528 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  n  e.  (
ZZ>= `  ( k  +  M ) ) )  ->  F  e.  V
)
17 zcn 9247 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  M  e.  CC )
1817ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  n  e.  (
ZZ>= `  ( k  +  M ) ) )  ->  M  e.  CC )
19 eluzelcn 9528 . . . . . . . . . . 11  |-  ( n  e.  ( ZZ>= `  (
k  +  M ) )  ->  n  e.  CC )
2019adantl 277 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  n  e.  (
ZZ>= `  ( k  +  M ) ) )  ->  n  e.  CC )
21 shftvalg 10829 . . . . . . . . . . . 12  |-  ( ( F  e.  V  /\  M  e.  CC  /\  n  e.  CC )  ->  (
( F  shift  M ) `
 n )  =  ( F `  (
n  -  M ) ) )
2221eleq1d 2246 . . . . . . . . . . 11  |-  ( ( F  e.  V  /\  M  e.  CC  /\  n  e.  CC )  ->  (
( ( F  shift  M ) `  n )  e.  CC  <->  ( F `  ( n  -  M
) )  e.  CC ) )
2321oveq1d 5884 . . . . . . . . . . . . 13  |-  ( ( F  e.  V  /\  M  e.  CC  /\  n  e.  CC )  ->  (
( ( F  shift  M ) `  n )  -  A )  =  ( ( F `  ( n  -  M
) )  -  A
) )
2423fveq2d 5515 . . . . . . . . . . . 12  |-  ( ( F  e.  V  /\  M  e.  CC  /\  n  e.  CC )  ->  ( abs `  ( ( ( F  shift  M ) `  n )  -  A
) )  =  ( abs `  ( ( F `  ( n  -  M ) )  -  A ) ) )
2524breq1d 4010 . . . . . . . . . . 11  |-  ( ( F  e.  V  /\  M  e.  CC  /\  n  e.  CC )  ->  (
( abs `  (
( ( F  shift  M ) `  n )  -  A ) )  <  x  <->  ( abs `  ( ( F `  ( n  -  M
) )  -  A
) )  <  x
) )
2622, 25anbi12d 473 . . . . . . . . . 10  |-  ( ( F  e.  V  /\  M  e.  CC  /\  n  e.  CC )  ->  (
( ( ( F 
shift  M ) `  n
)  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `
 n )  -  A ) )  < 
x )  <->  ( ( F `  ( n  -  M ) )  e.  CC  /\  ( abs `  ( ( F `  ( n  -  M
) )  -  A
) )  <  x
) ) )
2716, 18, 20, 26syl3anc 1238 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  n  e.  (
ZZ>= `  ( k  +  M ) ) )  ->  ( ( ( ( F  shift  M ) `
 n )  e.  CC  /\  ( abs `  ( ( ( F 
shift  M ) `  n
)  -  A ) )  <  x )  <-> 
( ( F `  ( n  -  M
) )  e.  CC  /\  ( abs `  (
( F `  (
n  -  M ) )  -  A ) )  <  x ) ) )
2827adantlr 477 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  k  e.  ZZ )  /\  n  e.  ( ZZ>= `  ( k  +  M ) ) )  ->  ( ( ( ( F  shift  M ) `
 n )  e.  CC  /\  ( abs `  ( ( ( F 
shift  M ) `  n
)  -  A ) )  <  x )  <-> 
( ( F `  ( n  -  M
) )  e.  CC  /\  ( abs `  (
( F `  (
n  -  M ) )  -  A ) )  <  x ) ) )
2915, 28sylibrd 169 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  k  e.  ZZ )  /\  n  e.  ( ZZ>= `  ( k  +  M ) ) )  ->  ( A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  ->  ( ( ( F  shift  M ) `  n )  e.  CC  /\  ( abs `  (
( ( F  shift  M ) `  n )  -  A ) )  <  x ) ) )
3029ralrimdva 2557 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  k  e.  ZZ )  ->  ( A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  ->  A. n  e.  (
ZZ>= `  ( k  +  M ) ) ( ( ( F  shift  M ) `  n )  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `  n )  -  A
) )  <  x
) ) )
31 fveq2 5511 . . . . . . . 8  |-  ( m  =  ( k  +  M )  ->  ( ZZ>=
`  m )  =  ( ZZ>= `  ( k  +  M ) ) )
3231raleqdv 2678 . . . . . . 7  |-  ( m  =  ( k  +  M )  ->  ( A. n  e.  ( ZZ>=
`  m ) ( ( ( F  shift  M ) `  n )  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `  n )  -  A
) )  <  x
)  <->  A. n  e.  (
ZZ>= `  ( k  +  M ) ) ( ( ( F  shift  M ) `  n )  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `  n )  -  A
) )  <  x
) ) )
3332rspcev 2841 . . . . . 6  |-  ( ( ( k  +  M
)  e.  ZZ  /\  A. n  e.  ( ZZ>= `  ( k  +  M
) ) ( ( ( F  shift  M ) `
 n )  e.  CC  /\  ( abs `  ( ( ( F 
shift  M ) `  n
)  -  A ) )  <  x ) )  ->  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m )
( ( ( F 
shift  M ) `  n
)  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `
 n )  -  A ) )  < 
x ) )
343, 30, 33syl6an 1434 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  k  e.  ZZ )  ->  ( A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  ->  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m ) ( ( ( F  shift  M ) `
 n )  e.  CC  /\  ( abs `  ( ( ( F 
shift  M ) `  n
)  -  A ) )  <  x ) ) )
3534rexlimdva 2594 . . . 4  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( E. k  e.  ZZ  A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  ->  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m ) ( ( ( F  shift  M ) `
 n )  e.  CC  /\  ( abs `  ( ( ( F 
shift  M ) `  n
)  -  A ) )  <  x ) ) )
3635ralimdv 2545 . . 3  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( A. x  e.  RR+  E. k  e.  ZZ  A. m  e.  ( ZZ>= `  k ) ( ( F `  m )  e.  CC  /\  ( abs `  ( ( F `
 m )  -  A ) )  < 
x )  ->  A. x  e.  RR+  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m )
( ( ( F 
shift  M ) `  n
)  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `
 n )  -  A ) )  < 
x ) ) )
3736anim2d 337 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( ( A  e.  CC  /\  A. x  e.  RR+  E. k  e.  ZZ  A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x ) )  ->  ( A  e.  CC  /\  A. x  e.  RR+  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m )
( ( ( F 
shift  M ) `  n
)  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `
 n )  -  A ) )  < 
x ) ) ) )
38 simpr 110 . . 3  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  F  e.  V )
39 eqidd 2178 . . 3  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  m  e.  ZZ )  ->  ( F `  m )  =  ( F `  m ) )
4038, 39clim 11273 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. k  e.  ZZ  A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x ) ) ) )
41 ovshftex 10812 . . . . 5  |-  ( ( F  e.  V  /\  M  e.  CC )  ->  ( F  shift  M )  e.  _V )
4241ancoms 268 . . . 4  |-  ( ( M  e.  CC  /\  F  e.  V )  ->  ( F  shift  M )  e.  _V )
4317, 42sylan 283 . . 3  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  shift  M )  e.  _V )
44 eqidd 2178 . . 3  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  n  e.  ZZ )  ->  ( ( F 
shift  M ) `  n
)  =  ( ( F  shift  M ) `  n ) )
4543, 44clim 11273 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( ( F  shift  M )  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m )
( ( ( F 
shift  M ) `  n
)  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `
 n )  -  A ) )  < 
x ) ) ) )
4637, 40, 453imtr4d 203 1  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  A  -> 
( F  shift  M )  ~~>  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   _Vcvv 2737   class class class wbr 4000   ` cfv 5212  (class class class)co 5869   CCcc 7800    + caddc 7805    < clt 7982    - cmin 8118   ZZcz 9242   ZZ>=cuz 9517   RR+crp 9640    shift cshi 10807   abscabs 10990    ~~> cli 11270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-shft 10808  df-clim 11271
This theorem is referenced by:  climshft  11296
  Copyright terms: Public domain W3C validator