ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climshftlemg Unicode version

Theorem climshftlemg 11813
Description: A shifted function converges if the original function converges. (Contributed by Mario Carneiro, 5-Nov-2013.)
Assertion
Ref Expression
climshftlemg  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  A  -> 
( F  shift  M )  ~~>  A ) )

Proof of Theorem climshftlemg
Dummy variables  k  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zaddcl 9486 . . . . . . . 8  |-  ( ( k  e.  ZZ  /\  M  e.  ZZ )  ->  ( k  +  M
)  e.  ZZ )
21ancoms 268 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ )  ->  ( k  +  M
)  e.  ZZ )
32adantlr 477 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  k  e.  ZZ )  ->  ( k  +  M )  e.  ZZ )
4 eluzsub 9752 . . . . . . . . . . . 12  |-  ( ( k  e.  ZZ  /\  M  e.  ZZ  /\  n  e.  ( ZZ>= `  ( k  +  M ) ) )  ->  ( n  -  M )  e.  (
ZZ>= `  k ) )
543com12 1231 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ  /\  n  e.  ( ZZ>= `  ( k  +  M ) ) )  ->  ( n  -  M )  e.  (
ZZ>= `  k ) )
653expa 1227 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  k  e.  ZZ )  /\  n  e.  (
ZZ>= `  ( k  +  M ) ) )  ->  ( n  -  M )  e.  (
ZZ>= `  k ) )
7 fveq2 5627 . . . . . . . . . . . . 13  |-  ( m  =  ( n  -  M )  ->  ( F `  m )  =  ( F `  ( n  -  M
) ) )
87eleq1d 2298 . . . . . . . . . . . 12  |-  ( m  =  ( n  -  M )  ->  (
( F `  m
)  e.  CC  <->  ( F `  ( n  -  M
) )  e.  CC ) )
97oveq1d 6016 . . . . . . . . . . . . . 14  |-  ( m  =  ( n  -  M )  ->  (
( F `  m
)  -  A )  =  ( ( F `
 ( n  -  M ) )  -  A ) )
109fveq2d 5631 . . . . . . . . . . . . 13  |-  ( m  =  ( n  -  M )  ->  ( abs `  ( ( F `
 m )  -  A ) )  =  ( abs `  (
( F `  (
n  -  M ) )  -  A ) ) )
1110breq1d 4093 . . . . . . . . . . . 12  |-  ( m  =  ( n  -  M )  ->  (
( abs `  (
( F `  m
)  -  A ) )  <  x  <->  ( abs `  ( ( F `  ( n  -  M
) )  -  A
) )  <  x
) )
128, 11anbi12d 473 . . . . . . . . . . 11  |-  ( m  =  ( n  -  M )  ->  (
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  <-> 
( ( F `  ( n  -  M
) )  e.  CC  /\  ( abs `  (
( F `  (
n  -  M ) )  -  A ) )  <  x ) ) )
1312rspcv 2903 . . . . . . . . . 10  |-  ( ( n  -  M )  e.  ( ZZ>= `  k
)  ->  ( A. m  e.  ( ZZ>= `  k ) ( ( F `  m )  e.  CC  /\  ( abs `  ( ( F `
 m )  -  A ) )  < 
x )  ->  (
( F `  (
n  -  M ) )  e.  CC  /\  ( abs `  ( ( F `  ( n  -  M ) )  -  A ) )  <  x ) ) )
146, 13syl 14 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  k  e.  ZZ )  /\  n  e.  (
ZZ>= `  ( k  +  M ) ) )  ->  ( A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  ->  ( ( F `
 ( n  -  M ) )  e.  CC  /\  ( abs `  ( ( F `  ( n  -  M
) )  -  A
) )  <  x
) ) )
1514adantllr 481 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  k  e.  ZZ )  /\  n  e.  ( ZZ>= `  ( k  +  M ) ) )  ->  ( A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  ->  ( ( F `
 ( n  -  M ) )  e.  CC  /\  ( abs `  ( ( F `  ( n  -  M
) )  -  A
) )  <  x
) ) )
16 simplr 528 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  n  e.  (
ZZ>= `  ( k  +  M ) ) )  ->  F  e.  V
)
17 zcn 9451 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  M  e.  CC )
1817ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  n  e.  (
ZZ>= `  ( k  +  M ) ) )  ->  M  e.  CC )
19 eluzelcn 9733 . . . . . . . . . . 11  |-  ( n  e.  ( ZZ>= `  (
k  +  M ) )  ->  n  e.  CC )
2019adantl 277 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  n  e.  (
ZZ>= `  ( k  +  M ) ) )  ->  n  e.  CC )
21 shftvalg 11347 . . . . . . . . . . . 12  |-  ( ( F  e.  V  /\  M  e.  CC  /\  n  e.  CC )  ->  (
( F  shift  M ) `
 n )  =  ( F `  (
n  -  M ) ) )
2221eleq1d 2298 . . . . . . . . . . 11  |-  ( ( F  e.  V  /\  M  e.  CC  /\  n  e.  CC )  ->  (
( ( F  shift  M ) `  n )  e.  CC  <->  ( F `  ( n  -  M
) )  e.  CC ) )
2321oveq1d 6016 . . . . . . . . . . . . 13  |-  ( ( F  e.  V  /\  M  e.  CC  /\  n  e.  CC )  ->  (
( ( F  shift  M ) `  n )  -  A )  =  ( ( F `  ( n  -  M
) )  -  A
) )
2423fveq2d 5631 . . . . . . . . . . . 12  |-  ( ( F  e.  V  /\  M  e.  CC  /\  n  e.  CC )  ->  ( abs `  ( ( ( F  shift  M ) `  n )  -  A
) )  =  ( abs `  ( ( F `  ( n  -  M ) )  -  A ) ) )
2524breq1d 4093 . . . . . . . . . . 11  |-  ( ( F  e.  V  /\  M  e.  CC  /\  n  e.  CC )  ->  (
( abs `  (
( ( F  shift  M ) `  n )  -  A ) )  <  x  <->  ( abs `  ( ( F `  ( n  -  M
) )  -  A
) )  <  x
) )
2622, 25anbi12d 473 . . . . . . . . . 10  |-  ( ( F  e.  V  /\  M  e.  CC  /\  n  e.  CC )  ->  (
( ( ( F 
shift  M ) `  n
)  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `
 n )  -  A ) )  < 
x )  <->  ( ( F `  ( n  -  M ) )  e.  CC  /\  ( abs `  ( ( F `  ( n  -  M
) )  -  A
) )  <  x
) ) )
2716, 18, 20, 26syl3anc 1271 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  n  e.  (
ZZ>= `  ( k  +  M ) ) )  ->  ( ( ( ( F  shift  M ) `
 n )  e.  CC  /\  ( abs `  ( ( ( F 
shift  M ) `  n
)  -  A ) )  <  x )  <-> 
( ( F `  ( n  -  M
) )  e.  CC  /\  ( abs `  (
( F `  (
n  -  M ) )  -  A ) )  <  x ) ) )
2827adantlr 477 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  k  e.  ZZ )  /\  n  e.  ( ZZ>= `  ( k  +  M ) ) )  ->  ( ( ( ( F  shift  M ) `
 n )  e.  CC  /\  ( abs `  ( ( ( F 
shift  M ) `  n
)  -  A ) )  <  x )  <-> 
( ( F `  ( n  -  M
) )  e.  CC  /\  ( abs `  (
( F `  (
n  -  M ) )  -  A ) )  <  x ) ) )
2915, 28sylibrd 169 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  k  e.  ZZ )  /\  n  e.  ( ZZ>= `  ( k  +  M ) ) )  ->  ( A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  ->  ( ( ( F  shift  M ) `  n )  e.  CC  /\  ( abs `  (
( ( F  shift  M ) `  n )  -  A ) )  <  x ) ) )
3029ralrimdva 2610 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  k  e.  ZZ )  ->  ( A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  ->  A. n  e.  (
ZZ>= `  ( k  +  M ) ) ( ( ( F  shift  M ) `  n )  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `  n )  -  A
) )  <  x
) ) )
31 fveq2 5627 . . . . . . . 8  |-  ( m  =  ( k  +  M )  ->  ( ZZ>=
`  m )  =  ( ZZ>= `  ( k  +  M ) ) )
3231raleqdv 2734 . . . . . . 7  |-  ( m  =  ( k  +  M )  ->  ( A. n  e.  ( ZZ>=
`  m ) ( ( ( F  shift  M ) `  n )  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `  n )  -  A
) )  <  x
)  <->  A. n  e.  (
ZZ>= `  ( k  +  M ) ) ( ( ( F  shift  M ) `  n )  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `  n )  -  A
) )  <  x
) ) )
3332rspcev 2907 . . . . . 6  |-  ( ( ( k  +  M
)  e.  ZZ  /\  A. n  e.  ( ZZ>= `  ( k  +  M
) ) ( ( ( F  shift  M ) `
 n )  e.  CC  /\  ( abs `  ( ( ( F 
shift  M ) `  n
)  -  A ) )  <  x ) )  ->  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m )
( ( ( F 
shift  M ) `  n
)  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `
 n )  -  A ) )  < 
x ) )
343, 30, 33syl6an 1476 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  k  e.  ZZ )  ->  ( A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  ->  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m ) ( ( ( F  shift  M ) `
 n )  e.  CC  /\  ( abs `  ( ( ( F 
shift  M ) `  n
)  -  A ) )  <  x ) ) )
3534rexlimdva 2648 . . . 4  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( E. k  e.  ZZ  A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x )  ->  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m ) ( ( ( F  shift  M ) `
 n )  e.  CC  /\  ( abs `  ( ( ( F 
shift  M ) `  n
)  -  A ) )  <  x ) ) )
3635ralimdv 2598 . . 3  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( A. x  e.  RR+  E. k  e.  ZZ  A. m  e.  ( ZZ>= `  k ) ( ( F `  m )  e.  CC  /\  ( abs `  ( ( F `
 m )  -  A ) )  < 
x )  ->  A. x  e.  RR+  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m )
( ( ( F 
shift  M ) `  n
)  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `
 n )  -  A ) )  < 
x ) ) )
3736anim2d 337 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( ( A  e.  CC  /\  A. x  e.  RR+  E. k  e.  ZZ  A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x ) )  ->  ( A  e.  CC  /\  A. x  e.  RR+  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m )
( ( ( F 
shift  M ) `  n
)  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `
 n )  -  A ) )  < 
x ) ) ) )
38 simpr 110 . . 3  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  F  e.  V )
39 eqidd 2230 . . 3  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  m  e.  ZZ )  ->  ( F `  m )  =  ( F `  m ) )
4038, 39clim 11792 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. k  e.  ZZ  A. m  e.  ( ZZ>= `  k )
( ( F `  m )  e.  CC  /\  ( abs `  (
( F `  m
)  -  A ) )  <  x ) ) ) )
41 ovshftex 11330 . . . . 5  |-  ( ( F  e.  V  /\  M  e.  CC )  ->  ( F  shift  M )  e.  _V )
4241ancoms 268 . . . 4  |-  ( ( M  e.  CC  /\  F  e.  V )  ->  ( F  shift  M )  e.  _V )
4317, 42sylan 283 . . 3  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  shift  M )  e.  _V )
44 eqidd 2230 . . 3  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  n  e.  ZZ )  ->  ( ( F 
shift  M ) `  n
)  =  ( ( F  shift  M ) `  n ) )
4543, 44clim 11792 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( ( F  shift  M )  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. m  e.  ZZ  A. n  e.  ( ZZ>= `  m )
( ( ( F 
shift  M ) `  n
)  e.  CC  /\  ( abs `  ( ( ( F  shift  M ) `
 n )  -  A ) )  < 
x ) ) ) )
4637, 40, 453imtr4d 203 1  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  A  -> 
( F  shift  M )  ~~>  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   _Vcvv 2799   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   CCcc 7997    + caddc 8002    < clt 8181    - cmin 8317   ZZcz 9446   ZZ>=cuz 9722   RR+crp 9849    shift cshi 11325   abscabs 11508    ~~> cli 11789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-shft 11326  df-clim 11790
This theorem is referenced by:  climshft  11815
  Copyright terms: Public domain W3C validator