ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemdisj Unicode version

Theorem ltexprlemdisj 7568
Description: Our constructed difference is disjoint. Lemma for ltexpri 7575. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
Assertion
Ref Expression
ltexprlemdisj  |-  ( A 
<P  B  ->  A. q  e.  Q.  -.  ( q  e.  ( 1st `  C
)  /\  q  e.  ( 2nd `  C ) ) )
Distinct variable groups:    x, y, q, A    x, B, y, q    x, C, y, q

Proof of Theorem ltexprlemdisj
Dummy variables  z  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltsonq 7360 . . . . . 6  |-  <Q  Or  Q.
2 ltrelnq 7327 . . . . . 6  |-  <Q  C_  ( Q.  X.  Q. )
31, 2son2lpi 5007 . . . . 5  |-  -.  (
y  <Q  z  /\  z  <Q  y )
4 ltrelpr 7467 . . . . . . . . . . . . . . . 16  |-  <P  C_  ( P.  X.  P. )
54brel 4663 . . . . . . . . . . . . . . 15  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
65simprd 113 . . . . . . . . . . . . . 14  |-  ( A 
<P  B  ->  B  e. 
P. )
7 prop 7437 . . . . . . . . . . . . . 14  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
86, 7syl 14 . . . . . . . . . . . . 13  |-  ( A 
<P  B  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
9 prltlu 7449 . . . . . . . . . . . . 13  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  ( y  +Q  q
)  e.  ( 1st `  B )  /\  (
z  +Q  q )  e.  ( 2nd `  B
) )  ->  (
y  +Q  q ) 
<Q  ( z  +Q  q
) )
108, 9syl3an1 1266 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  ( y  +Q  q
)  e.  ( 1st `  B )  /\  (
z  +Q  q )  e.  ( 2nd `  B
) )  ->  (
y  +Q  q ) 
<Q  ( z  +Q  q
) )
11103expb 1199 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  ( ( y  +Q  q )  e.  ( 1st `  B )  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) )  ->  (
y  +Q  q ) 
<Q  ( z  +Q  q
) )
1211adantlr 474 . . . . . . . . . 10  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( ( y  +Q  q )  e.  ( 1st `  B )  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) )  ->  (
y  +Q  q ) 
<Q  ( z  +Q  q
) )
1312adantrll 481 . . . . . . . . 9  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  +Q  q )  e.  ( 2nd `  B
) ) )  -> 
( y  +Q  q
)  <Q  ( z  +Q  q ) )
1413adantrrl 483 . . . . . . . 8  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )  -> 
( y  +Q  q
)  <Q  ( z  +Q  q ) )
15 ltanqg 7362 . . . . . . . . . 10  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
1615adantl 275 . . . . . . . . 9  |-  ( ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )  /\  ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )
)  ->  ( f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
175simpld 111 . . . . . . . . . . . . 13  |-  ( A 
<P  B  ->  A  e. 
P. )
18 prop 7437 . . . . . . . . . . . . 13  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
1917, 18syl 14 . . . . . . . . . . . 12  |-  ( A 
<P  B  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
20 elprnqu 7444 . . . . . . . . . . . 12  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
2119, 20sylan 281 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
2221ad2ant2r 506 . . . . . . . . . 10  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )  ->  y  e.  Q. )
2322adantrr 476 . . . . . . . . 9  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )  -> 
y  e.  Q. )
24 elprnql 7443 . . . . . . . . . . . 12  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  z  e.  ( 1st `  A ) )  -> 
z  e.  Q. )
2519, 24sylan 281 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  z  e.  ( 1st `  A ) )  -> 
z  e.  Q. )
2625ad2ant2r 506 . . . . . . . . . 10  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( z  e.  ( 1st `  A )  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) )  ->  z  e.  Q. )
2726adantrl 475 . . . . . . . . 9  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )  -> 
z  e.  Q. )
28 simplr 525 . . . . . . . . 9  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )  -> 
q  e.  Q. )
29 addcomnqg 7343 . . . . . . . . . 10  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
3029adantl 275 . . . . . . . . 9  |-  ( ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )  /\  ( f  e.  Q.  /\  g  e.  Q. )
)  ->  ( f  +Q  g )  =  ( g  +Q  f ) )
3116, 23, 27, 28, 30caovord2d 6022 . . . . . . . 8  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )  -> 
( y  <Q  z  <->  ( y  +Q  q ) 
<Q  ( z  +Q  q
) ) )
3214, 31mpbird 166 . . . . . . 7  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )  -> 
y  <Q  z )
33 prltlu 7449 . . . . . . . . . . . . 13  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A
) )  ->  z  <Q  y )
3419, 33syl3an1 1266 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A
) )  ->  z  <Q  y )
35343com23 1204 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  y  e.  ( 2nd `  A )  /\  z  e.  ( 1st `  A
) )  ->  z  <Q  y )
36353expb 1199 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  ( y  e.  ( 2nd `  A )  /\  z  e.  ( 1st `  A ) ) )  ->  z  <Q  y )
3736adantlr 474 . . . . . . . . 9  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( y  e.  ( 2nd `  A )  /\  z  e.  ( 1st `  A ) ) )  ->  z  <Q  y )
3837adantrlr 482 . . . . . . . 8  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  z  e.  ( 1st `  A
) ) )  -> 
z  <Q  y )
3938adantrrr 484 . . . . . . 7  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )  -> 
z  <Q  y )
4032, 39jca 304 . . . . . 6  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )  -> 
( y  <Q  z  /\  z  <Q  y ) )
4140ex 114 . . . . 5  |-  ( ( A  <P  B  /\  q  e.  Q. )  ->  ( ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) )  ->  (
y  <Q  z  /\  z  <Q  y ) ) )
423, 41mtoi 659 . . . 4  |-  ( ( A  <P  B  /\  q  e.  Q. )  ->  -.  ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )
4342alrimivv 1868 . . 3  |-  ( ( A  <P  B  /\  q  e.  Q. )  ->  A. y A. z  -.  ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )
44 ltexprlem.1 . . . . . . . . . . . 12  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
4544ltexprlemell 7560 . . . . . . . . . . 11  |-  ( q  e.  ( 1st `  C
)  <->  ( q  e. 
Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
4644ltexprlemelu 7561 . . . . . . . . . . 11  |-  ( q  e.  ( 2nd `  C
)  <->  ( q  e. 
Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )
4745, 46anbi12i 457 . . . . . . . . . 10  |-  ( ( q  e.  ( 1st `  C )  /\  q  e.  ( 2nd `  C
) )  <->  ( (
q  e.  Q.  /\  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )  /\  (
q  e.  Q.  /\  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
48 anandi 585 . . . . . . . . . 10  |-  ( ( q  e.  Q.  /\  ( E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )  <->  ( (
q  e.  Q.  /\  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )  /\  (
q  e.  Q.  /\  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
4947, 48bitr4i 186 . . . . . . . . 9  |-  ( ( q  e.  ( 1st `  C )  /\  q  e.  ( 2nd `  C
) )  <->  ( q  e.  Q.  /\  ( E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
5049baib 914 . . . . . . . 8  |-  ( q  e.  Q.  ->  (
( q  e.  ( 1st `  C )  /\  q  e.  ( 2nd `  C ) )  <->  ( E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
51 eleq1 2233 . . . . . . . . . . 11  |-  ( y  =  z  ->  (
y  e.  ( 1st `  A )  <->  z  e.  ( 1st `  A ) ) )
52 oveq1 5860 . . . . . . . . . . . 12  |-  ( y  =  z  ->  (
y  +Q  q )  =  ( z  +Q  q ) )
5352eleq1d 2239 . . . . . . . . . . 11  |-  ( y  =  z  ->  (
( y  +Q  q
)  e.  ( 2nd `  B )  <->  ( z  +Q  q )  e.  ( 2nd `  B ) ) )
5451, 53anbi12d 470 . . . . . . . . . 10  |-  ( y  =  z  ->  (
( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) )  <->  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )
5554cbvexv 1911 . . . . . . . . 9  |-  ( E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) )  <->  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) )
5655anbi2i 454 . . . . . . . 8  |-  ( ( E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) )  <->  ( E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  E. z
( z  e.  ( 1st `  A )  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )
5750, 56bitrdi 195 . . . . . . 7  |-  ( q  e.  Q.  ->  (
( q  e.  ( 1st `  C )  /\  q  e.  ( 2nd `  C ) )  <->  ( E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  E. z
( z  e.  ( 1st `  A )  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
58 eeanv 1925 . . . . . . 7  |-  ( E. y E. z ( ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) )  <->  ( E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  E. z
( z  e.  ( 1st `  A )  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )
5957, 58bitr4di 197 . . . . . 6  |-  ( q  e.  Q.  ->  (
( q  e.  ( 1st `  C )  /\  q  e.  ( 2nd `  C ) )  <->  E. y E. z
( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
6059notbid 662 . . . . 5  |-  ( q  e.  Q.  ->  ( -.  ( q  e.  ( 1st `  C )  /\  q  e.  ( 2nd `  C ) )  <->  -.  E. y E. z ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
61 alnex 1492 . . . . . . 7  |-  ( A. z  -.  ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) )  <->  -.  E. z
( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )
6261albii 1463 . . . . . 6  |-  ( A. y A. z  -.  (
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) )  <->  A. y  -.  E. z ( ( y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) )  /\  (
z  e.  ( 1st `  A )  /\  (
z  +Q  q )  e.  ( 2nd `  B
) ) ) )
63 alnex 1492 . . . . . 6  |-  ( A. y  -.  E. z ( ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) )  <->  -.  E. y E. z ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )
6462, 63bitri 183 . . . . 5  |-  ( A. y A. z  -.  (
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) )  <->  -.  E. y E. z ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )
6560, 64bitr4di 197 . . . 4  |-  ( q  e.  Q.  ->  ( -.  ( q  e.  ( 1st `  C )  /\  q  e.  ( 2nd `  C ) )  <->  A. y A. z  -.  ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
6665adantl 275 . . 3  |-  ( ( A  <P  B  /\  q  e.  Q. )  ->  ( -.  ( q  e.  ( 1st `  C
)  /\  q  e.  ( 2nd `  C ) )  <->  A. y A. z  -.  ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
6743, 66mpbird 166 . 2  |-  ( ( A  <P  B  /\  q  e.  Q. )  ->  -.  ( q  e.  ( 1st `  C
)  /\  q  e.  ( 2nd `  C ) ) )
6867ralrimiva 2543 1  |-  ( A 
<P  B  ->  A. q  e.  Q.  -.  ( q  e.  ( 1st `  C
)  /\  q  e.  ( 2nd `  C ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973   A.wal 1346    = wceq 1348   E.wex 1485    e. wcel 2141   A.wral 2448   {crab 2452   <.cop 3586   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   1stc1st 6117   2ndc2nd 6118   Q.cnq 7242    +Q cplq 7244    <Q cltq 7247   P.cnp 7253    <P cltp 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-ltnqqs 7315  df-inp 7428  df-iltp 7432
This theorem is referenced by:  ltexprlempr  7570
  Copyright terms: Public domain W3C validator