ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemdisj Unicode version

Theorem ltexprlemdisj 7690
Description: Our constructed difference is disjoint. Lemma for ltexpri 7697. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
Assertion
Ref Expression
ltexprlemdisj  |-  ( A 
<P  B  ->  A. q  e.  Q.  -.  ( q  e.  ( 1st `  C
)  /\  q  e.  ( 2nd `  C ) ) )
Distinct variable groups:    x, y, q, A    x, B, y, q    x, C, y, q

Proof of Theorem ltexprlemdisj
Dummy variables  z  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltsonq 7482 . . . . . 6  |-  <Q  Or  Q.
2 ltrelnq 7449 . . . . . 6  |-  <Q  C_  ( Q.  X.  Q. )
31, 2son2lpi 5067 . . . . 5  |-  -.  (
y  <Q  z  /\  z  <Q  y )
4 ltrelpr 7589 . . . . . . . . . . . . . . . 16  |-  <P  C_  ( P.  X.  P. )
54brel 4716 . . . . . . . . . . . . . . 15  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
65simprd 114 . . . . . . . . . . . . . 14  |-  ( A 
<P  B  ->  B  e. 
P. )
7 prop 7559 . . . . . . . . . . . . . 14  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
86, 7syl 14 . . . . . . . . . . . . 13  |-  ( A 
<P  B  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
9 prltlu 7571 . . . . . . . . . . . . 13  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  ( y  +Q  q
)  e.  ( 1st `  B )  /\  (
z  +Q  q )  e.  ( 2nd `  B
) )  ->  (
y  +Q  q ) 
<Q  ( z  +Q  q
) )
108, 9syl3an1 1282 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  ( y  +Q  q
)  e.  ( 1st `  B )  /\  (
z  +Q  q )  e.  ( 2nd `  B
) )  ->  (
y  +Q  q ) 
<Q  ( z  +Q  q
) )
11103expb 1206 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  ( ( y  +Q  q )  e.  ( 1st `  B )  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) )  ->  (
y  +Q  q ) 
<Q  ( z  +Q  q
) )
1211adantlr 477 . . . . . . . . . 10  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( ( y  +Q  q )  e.  ( 1st `  B )  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) )  ->  (
y  +Q  q ) 
<Q  ( z  +Q  q
) )
1312adantrll 484 . . . . . . . . 9  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  +Q  q )  e.  ( 2nd `  B
) ) )  -> 
( y  +Q  q
)  <Q  ( z  +Q  q ) )
1413adantrrl 486 . . . . . . . 8  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )  -> 
( y  +Q  q
)  <Q  ( z  +Q  q ) )
15 ltanqg 7484 . . . . . . . . . 10  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
1615adantl 277 . . . . . . . . 9  |-  ( ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )  /\  ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )
)  ->  ( f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
175simpld 112 . . . . . . . . . . . . 13  |-  ( A 
<P  B  ->  A  e. 
P. )
18 prop 7559 . . . . . . . . . . . . 13  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
1917, 18syl 14 . . . . . . . . . . . 12  |-  ( A 
<P  B  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
20 elprnqu 7566 . . . . . . . . . . . 12  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
2119, 20sylan 283 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
2221ad2ant2r 509 . . . . . . . . . 10  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )  ->  y  e.  Q. )
2322adantrr 479 . . . . . . . . 9  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )  -> 
y  e.  Q. )
24 elprnql 7565 . . . . . . . . . . . 12  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  z  e.  ( 1st `  A ) )  -> 
z  e.  Q. )
2519, 24sylan 283 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  z  e.  ( 1st `  A ) )  -> 
z  e.  Q. )
2625ad2ant2r 509 . . . . . . . . . 10  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( z  e.  ( 1st `  A )  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) )  ->  z  e.  Q. )
2726adantrl 478 . . . . . . . . 9  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )  -> 
z  e.  Q. )
28 simplr 528 . . . . . . . . 9  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )  -> 
q  e.  Q. )
29 addcomnqg 7465 . . . . . . . . . 10  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
3029adantl 277 . . . . . . . . 9  |-  ( ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )  /\  ( f  e.  Q.  /\  g  e.  Q. )
)  ->  ( f  +Q  g )  =  ( g  +Q  f ) )
3116, 23, 27, 28, 30caovord2d 6097 . . . . . . . 8  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )  -> 
( y  <Q  z  <->  ( y  +Q  q ) 
<Q  ( z  +Q  q
) ) )
3214, 31mpbird 167 . . . . . . 7  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )  -> 
y  <Q  z )
33 prltlu 7571 . . . . . . . . . . . . 13  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A
) )  ->  z  <Q  y )
3419, 33syl3an1 1282 . . . . . . . . . . . 12  |-  ( ( A  <P  B  /\  z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A
) )  ->  z  <Q  y )
35343com23 1211 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  y  e.  ( 2nd `  A )  /\  z  e.  ( 1st `  A
) )  ->  z  <Q  y )
36353expb 1206 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  ( y  e.  ( 2nd `  A )  /\  z  e.  ( 1st `  A ) ) )  ->  z  <Q  y )
3736adantlr 477 . . . . . . . . 9  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( y  e.  ( 2nd `  A )  /\  z  e.  ( 1st `  A ) ) )  ->  z  <Q  y )
3837adantrlr 485 . . . . . . . 8  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  z  e.  ( 1st `  A
) ) )  -> 
z  <Q  y )
3938adantrrr 487 . . . . . . 7  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )  -> 
z  <Q  y )
4032, 39jca 306 . . . . . 6  |-  ( ( ( A  <P  B  /\  q  e.  Q. )  /\  ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )  -> 
( y  <Q  z  /\  z  <Q  y ) )
4140ex 115 . . . . 5  |-  ( ( A  <P  B  /\  q  e.  Q. )  ->  ( ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) )  ->  (
y  <Q  z  /\  z  <Q  y ) ) )
423, 41mtoi 665 . . . 4  |-  ( ( A  <P  B  /\  q  e.  Q. )  ->  -.  ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )
4342alrimivv 1889 . . 3  |-  ( ( A  <P  B  /\  q  e.  Q. )  ->  A. y A. z  -.  ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )
44 ltexprlem.1 . . . . . . . . . . . 12  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
4544ltexprlemell 7682 . . . . . . . . . . 11  |-  ( q  e.  ( 1st `  C
)  <->  ( q  e. 
Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
4644ltexprlemelu 7683 . . . . . . . . . . 11  |-  ( q  e.  ( 2nd `  C
)  <->  ( q  e. 
Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )
4745, 46anbi12i 460 . . . . . . . . . 10  |-  ( ( q  e.  ( 1st `  C )  /\  q  e.  ( 2nd `  C
) )  <->  ( (
q  e.  Q.  /\  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )  /\  (
q  e.  Q.  /\  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
48 anandi 590 . . . . . . . . . 10  |-  ( ( q  e.  Q.  /\  ( E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) )  <->  ( (
q  e.  Q.  /\  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )  /\  (
q  e.  Q.  /\  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
4947, 48bitr4i 187 . . . . . . . . 9  |-  ( ( q  e.  ( 1st `  C )  /\  q  e.  ( 2nd `  C
) )  <->  ( q  e.  Q.  /\  ( E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
5049baib 920 . . . . . . . 8  |-  ( q  e.  Q.  ->  (
( q  e.  ( 1st `  C )  /\  q  e.  ( 2nd `  C ) )  <->  ( E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
51 eleq1 2259 . . . . . . . . . . 11  |-  ( y  =  z  ->  (
y  e.  ( 1st `  A )  <->  z  e.  ( 1st `  A ) ) )
52 oveq1 5932 . . . . . . . . . . . 12  |-  ( y  =  z  ->  (
y  +Q  q )  =  ( z  +Q  q ) )
5352eleq1d 2265 . . . . . . . . . . 11  |-  ( y  =  z  ->  (
( y  +Q  q
)  e.  ( 2nd `  B )  <->  ( z  +Q  q )  e.  ( 2nd `  B ) ) )
5451, 53anbi12d 473 . . . . . . . . . 10  |-  ( y  =  z  ->  (
( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) )  <->  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )
5554cbvexv 1933 . . . . . . . . 9  |-  ( E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  q )  e.  ( 2nd `  B ) )  <->  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) )
5655anbi2i 457 . . . . . . . 8  |-  ( ( E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  q )  e.  ( 2nd `  B ) ) )  <->  ( E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  E. z
( z  e.  ( 1st `  A )  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )
5750, 56bitrdi 196 . . . . . . 7  |-  ( q  e.  Q.  ->  (
( q  e.  ( 1st `  C )  /\  q  e.  ( 2nd `  C ) )  <->  ( E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  E. z
( z  e.  ( 1st `  A )  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
58 eeanv 1951 . . . . . . 7  |-  ( E. y E. z ( ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) )  <->  ( E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  E. z
( z  e.  ( 1st `  A )  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )
5957, 58bitr4di 198 . . . . . 6  |-  ( q  e.  Q.  ->  (
( q  e.  ( 1st `  C )  /\  q  e.  ( 2nd `  C ) )  <->  E. y E. z
( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
6059notbid 668 . . . . 5  |-  ( q  e.  Q.  ->  ( -.  ( q  e.  ( 1st `  C )  /\  q  e.  ( 2nd `  C ) )  <->  -.  E. y E. z ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
61 alnex 1513 . . . . . . 7  |-  ( A. z  -.  ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) )  <->  -.  E. z
( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )
6261albii 1484 . . . . . 6  |-  ( A. y A. z  -.  (
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) )  <->  A. y  -.  E. z ( ( y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) )  /\  (
z  e.  ( 1st `  A )  /\  (
z  +Q  q )  e.  ( 2nd `  B
) ) ) )
63 alnex 1513 . . . . . 6  |-  ( A. y  -.  E. z ( ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) )  <->  -.  E. y E. z ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )
6462, 63bitri 184 . . . . 5  |-  ( A. y A. z  -.  (
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) )  <->  -.  E. y E. z ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) )
6560, 64bitr4di 198 . . . 4  |-  ( q  e.  Q.  ->  ( -.  ( q  e.  ( 1st `  C )  /\  q  e.  ( 2nd `  C ) )  <->  A. y A. z  -.  ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
6665adantl 277 . . 3  |-  ( ( A  <P  B  /\  q  e.  Q. )  ->  ( -.  ( q  e.  ( 1st `  C
)  /\  q  e.  ( 2nd `  C ) )  <->  A. y A. z  -.  ( ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  /\  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  q )  e.  ( 2nd `  B ) ) ) ) )
6743, 66mpbird 167 . 2  |-  ( ( A  <P  B  /\  q  e.  Q. )  ->  -.  ( q  e.  ( 1st `  C
)  /\  q  e.  ( 2nd `  C ) ) )
6867ralrimiva 2570 1  |-  ( A 
<P  B  ->  A. q  e.  Q.  -.  ( q  e.  ( 1st `  C
)  /\  q  e.  ( 2nd `  C ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980   A.wal 1362    = wceq 1364   E.wex 1506    e. wcel 2167   A.wral 2475   {crab 2479   <.cop 3626   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   1stc1st 6205   2ndc2nd 6206   Q.cnq 7364    +Q cplq 7366    <Q cltq 7369   P.cnp 7375    <P cltp 7379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-ltnqqs 7437  df-inp 7550  df-iltp 7554
This theorem is referenced by:  ltexprlempr  7692
  Copyright terms: Public domain W3C validator