| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bldisj | Unicode version | ||
| Description: Two balls are disjoint if the center-to-center distance is more than the sum of the radii. (Contributed by Mario Carneiro, 30-Dec-2013.) |
| Ref | Expression |
|---|---|
| bldisj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr3 1008 |
. . . 4
| |
| 2 | simpr1 1006 |
. . . . . 6
| |
| 3 | simpr2 1007 |
. . . . . 6
| |
| 4 | 2, 3 | xaddcld 10026 |
. . . . 5
|
| 5 | xmetcl 14899 |
. . . . . 6
| |
| 6 | 5 | adantr 276 |
. . . . 5
|
| 7 | xrlenlt 8157 |
. . . . 5
| |
| 8 | 4, 6, 7 | syl2anc 411 |
. . . 4
|
| 9 | 1, 8 | mpbid 147 |
. . 3
|
| 10 | elin 3360 |
. . . 4
| |
| 11 | simpl1 1003 |
. . . . . . . 8
| |
| 12 | simpl2 1004 |
. . . . . . . 8
| |
| 13 | elbl 14938 |
. . . . . . . 8
| |
| 14 | 11, 12, 2, 13 | syl3anc 1250 |
. . . . . . 7
|
| 15 | simpl3 1005 |
. . . . . . . 8
| |
| 16 | elbl 14938 |
. . . . . . . 8
| |
| 17 | 11, 15, 3, 16 | syl3anc 1250 |
. . . . . . 7
|
| 18 | 14, 17 | anbi12d 473 |
. . . . . 6
|
| 19 | anandi 590 |
. . . . . 6
| |
| 20 | 18, 19 | bitr4di 198 |
. . . . 5
|
| 21 | 11 | adantr 276 |
. . . . . . . . 9
|
| 22 | 12 | adantr 276 |
. . . . . . . . 9
|
| 23 | simpr 110 |
. . . . . . . . 9
| |
| 24 | xmetcl 14899 |
. . . . . . . . 9
| |
| 25 | 21, 22, 23, 24 | syl3anc 1250 |
. . . . . . . 8
|
| 26 | 15 | adantr 276 |
. . . . . . . . 9
|
| 27 | xmetcl 14899 |
. . . . . . . . 9
| |
| 28 | 21, 26, 23, 27 | syl3anc 1250 |
. . . . . . . 8
|
| 29 | 2 | adantr 276 |
. . . . . . . 8
|
| 30 | 3 | adantr 276 |
. . . . . . . 8
|
| 31 | xlt2add 10022 |
. . . . . . . 8
| |
| 32 | 25, 28, 29, 30, 31 | syl22anc 1251 |
. . . . . . 7
|
| 33 | xmettri3 14921 |
. . . . . . . . 9
| |
| 34 | 21, 22, 26, 23, 33 | syl13anc 1252 |
. . . . . . . 8
|
| 35 | 6 | adantr 276 |
. . . . . . . . 9
|
| 36 | 25, 28 | xaddcld 10026 |
. . . . . . . . 9
|
| 37 | 4 | adantr 276 |
. . . . . . . . 9
|
| 38 | xrlelttr 9948 |
. . . . . . . . 9
| |
| 39 | 35, 36, 37, 38 | syl3anc 1250 |
. . . . . . . 8
|
| 40 | 34, 39 | mpand 429 |
. . . . . . 7
|
| 41 | 32, 40 | syld 45 |
. . . . . 6
|
| 42 | 41 | expimpd 363 |
. . . . 5
|
| 43 | 20, 42 | sylbid 150 |
. . . 4
|
| 44 | 10, 43 | biimtrid 152 |
. . 3
|
| 45 | 9, 44 | mtod 665 |
. 2
|
| 46 | 45 | eq0rdv 3509 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-i2m1 8050 ax-0id 8053 ax-rnegex 8054 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-po 4351 df-iso 4352 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-map 6750 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-xadd 9915 df-psmet 14380 df-xmet 14381 df-bl 14383 |
| This theorem is referenced by: bl2in 14950 |
| Copyright terms: Public domain | W3C validator |