ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bldisj Unicode version

Theorem bldisj 14378
Description: Two balls are disjoint if the center-to-center distance is more than the sum of the radii. (Contributed by Mario Carneiro, 30-Dec-2013.)
Assertion
Ref Expression
bldisj  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( ( P ( ball `  D
) R )  i^i  ( Q ( ball `  D ) S ) )  =  (/) )

Proof of Theorem bldisj
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpr3 1007 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( R +e S )  <_ 
( P D Q ) )
2 simpr1 1005 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  R  e.  RR* )
3 simpr2 1006 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  S  e.  RR* )
42, 3xaddcld 9916 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( R +e S )  e. 
RR* )
5 xmetcl 14329 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  ->  ( P D Q )  e.  RR* )
65adantr 276 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( P D Q )  e.  RR* )
7 xrlenlt 8053 . . . . 5  |-  ( ( ( R +e
S )  e.  RR*  /\  ( P D Q )  e.  RR* )  ->  ( ( R +e S )  <_ 
( P D Q )  <->  -.  ( P D Q )  <  ( R +e S ) ) )
84, 6, 7syl2anc 411 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( ( R +e S )  <_  ( P D Q )  <->  -.  ( P D Q )  < 
( R +e
S ) ) )
91, 8mpbid 147 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  -.  ( P D Q )  <  ( R +e S ) )
10 elin 3333 . . . 4  |-  ( x  e.  ( ( P ( ball `  D
) R )  i^i  ( Q ( ball `  D ) S ) )  <->  ( x  e.  ( P ( ball `  D ) R )  /\  x  e.  ( Q ( ball `  D
) S ) ) )
11 simpl1 1002 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  D  e.  ( *Met `  X
) )
12 simpl2 1003 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  P  e.  X
)
13 elbl 14368 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  D
) R )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
1411, 12, 2, 13syl3anc 1249 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( x  e.  ( P ( ball `  D ) R )  <-> 
( x  e.  X  /\  ( P D x )  <  R ) ) )
15 simpl3 1004 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  Q  e.  X
)
16 elbl 14368 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  Q  e.  X  /\  S  e.  RR* )  ->  ( x  e.  ( Q ( ball `  D
) S )  <->  ( x  e.  X  /\  ( Q D x )  < 
S ) ) )
1711, 15, 3, 16syl3anc 1249 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( x  e.  ( Q ( ball `  D ) S )  <-> 
( x  e.  X  /\  ( Q D x )  <  S ) ) )
1814, 17anbi12d 473 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( ( x  e.  ( P (
ball `  D ) R )  /\  x  e.  ( Q ( ball `  D ) S ) )  <->  ( ( x  e.  X  /\  ( P D x )  < 
R )  /\  (
x  e.  X  /\  ( Q D x )  <  S ) ) ) )
19 anandi 590 . . . . . 6  |-  ( ( x  e.  X  /\  ( ( P D x )  <  R  /\  ( Q D x )  <  S ) )  <->  ( ( x  e.  X  /\  ( P D x )  < 
R )  /\  (
x  e.  X  /\  ( Q D x )  <  S ) ) )
2018, 19bitr4di 198 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( ( x  e.  ( P (
ball `  D ) R )  /\  x  e.  ( Q ( ball `  D ) S ) )  <->  ( x  e.  X  /\  ( ( P D x )  <  R  /\  ( Q D x )  < 
S ) ) ) )
2111adantr 276 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  D  e.  ( *Met `  X
) )
2212adantr 276 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  P  e.  X )
23 simpr 110 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  x  e.  X )
24 xmetcl 14329 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  x  e.  X
)  ->  ( P D x )  e. 
RR* )
2521, 22, 23, 24syl3anc 1249 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( P D x )  e. 
RR* )
2615adantr 276 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  Q  e.  X )
27 xmetcl 14329 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  Q  e.  X  /\  x  e.  X
)  ->  ( Q D x )  e. 
RR* )
2821, 26, 23, 27syl3anc 1249 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( Q D x )  e. 
RR* )
292adantr 276 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  R  e.  RR* )
303adantr 276 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  S  e.  RR* )
31 xlt2add 9912 . . . . . . . 8  |-  ( ( ( ( P D x )  e.  RR*  /\  ( Q D x )  e.  RR* )  /\  ( R  e.  RR*  /\  S  e.  RR* )
)  ->  ( (
( P D x )  <  R  /\  ( Q D x )  <  S )  -> 
( ( P D x ) +e
( Q D x ) )  <  ( R +e S ) ) )
3225, 28, 29, 30, 31syl22anc 1250 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( (
( P D x )  <  R  /\  ( Q D x )  <  S )  -> 
( ( P D x ) +e
( Q D x ) )  <  ( R +e S ) ) )
33 xmettri3 14351 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  ( P  e.  X  /\  Q  e.  X  /\  x  e.  X ) )  -> 
( P D Q )  <_  ( ( P D x ) +e ( Q D x ) ) )
3421, 22, 26, 23, 33syl13anc 1251 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( P D Q )  <_  (
( P D x ) +e ( Q D x ) ) )
356adantr 276 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( P D Q )  e.  RR* )
3625, 28xaddcld 9916 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( ( P D x ) +e ( Q D x ) )  e. 
RR* )
374adantr 276 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( R +e S )  e.  RR* )
38 xrlelttr 9838 . . . . . . . . 9  |-  ( ( ( P D Q )  e.  RR*  /\  (
( P D x ) +e ( Q D x ) )  e.  RR*  /\  ( R +e S )  e.  RR* )  ->  (
( ( P D Q )  <_  (
( P D x ) +e ( Q D x ) )  /\  ( ( P D x ) +e ( Q D x ) )  <  ( R +e S ) )  ->  ( P D Q )  <  ( R +e S ) ) )
3935, 36, 37, 38syl3anc 1249 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( (
( P D Q )  <_  ( ( P D x ) +e ( Q D x ) )  /\  ( ( P D x ) +e
( Q D x ) )  <  ( R +e S ) )  ->  ( P D Q )  <  ( R +e S ) ) )
4034, 39mpand 429 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( (
( P D x ) +e ( Q D x ) )  <  ( R +e S )  ->  ( P D Q )  <  ( R +e S ) ) )
4132, 40syld 45 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( (
( P D x )  <  R  /\  ( Q D x )  <  S )  -> 
( P D Q )  <  ( R +e S ) ) )
4241expimpd 363 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( ( x  e.  X  /\  (
( P D x )  <  R  /\  ( Q D x )  <  S ) )  ->  ( P D Q )  <  ( R +e S ) ) )
4320, 42sylbid 150 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( ( x  e.  ( P (
ball `  D ) R )  /\  x  e.  ( Q ( ball `  D ) S ) )  ->  ( P D Q )  <  ( R +e S ) ) )
4410, 43biimtrid 152 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( x  e.  ( ( P (
ball `  D ) R )  i^i  ( Q ( ball `  D
) S ) )  ->  ( P D Q )  <  ( R +e S ) ) )
459, 44mtod 664 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  -.  x  e.  ( ( P (
ball `  D ) R )  i^i  ( Q ( ball `  D
) S ) ) )
4645eq0rdv 3482 1  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( ( P ( ball `  D
) R )  i^i  ( Q ( ball `  D ) S ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160    i^i cin 3143   (/)c0 3437   class class class wbr 4018   ` cfv 5235  (class class class)co 5897   RR*cxr 8022    < clt 8023    <_ cle 8024   +ecxad 9802   *Metcxmet 13866   ballcbl 13868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-addcom 7942  ax-addass 7944  ax-i2m1 7947  ax-0id 7950  ax-rnegex 7951  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-po 4314  df-iso 4315  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-map 6677  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-xadd 9805  df-psmet 13873  df-xmet 13874  df-bl 13876
This theorem is referenced by:  bl2in  14380
  Copyright terms: Public domain W3C validator