Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bldisj | Unicode version |
Description: Two balls are disjoint if the center-to-center distance is more than the sum of the radii. (Contributed by Mario Carneiro, 30-Dec-2013.) |
Ref | Expression |
---|---|
bldisj |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr3 1000 | . . . 4 | |
2 | simpr1 998 | . . . . . 6 | |
3 | simpr2 999 | . . . . . 6 | |
4 | 2, 3 | xaddcld 9841 | . . . . 5 |
5 | xmetcl 13146 | . . . . . 6 | |
6 | 5 | adantr 274 | . . . . 5 |
7 | xrlenlt 7984 | . . . . 5 | |
8 | 4, 6, 7 | syl2anc 409 | . . . 4 |
9 | 1, 8 | mpbid 146 | . . 3 |
10 | elin 3310 | . . . 4 | |
11 | simpl1 995 | . . . . . . . 8 | |
12 | simpl2 996 | . . . . . . . 8 | |
13 | elbl 13185 | . . . . . . . 8 | |
14 | 11, 12, 2, 13 | syl3anc 1233 | . . . . . . 7 |
15 | simpl3 997 | . . . . . . . 8 | |
16 | elbl 13185 | . . . . . . . 8 | |
17 | 11, 15, 3, 16 | syl3anc 1233 | . . . . . . 7 |
18 | 14, 17 | anbi12d 470 | . . . . . 6 |
19 | anandi 585 | . . . . . 6 | |
20 | 18, 19 | bitr4di 197 | . . . . 5 |
21 | 11 | adantr 274 | . . . . . . . . 9 |
22 | 12 | adantr 274 | . . . . . . . . 9 |
23 | simpr 109 | . . . . . . . . 9 | |
24 | xmetcl 13146 | . . . . . . . . 9 | |
25 | 21, 22, 23, 24 | syl3anc 1233 | . . . . . . . 8 |
26 | 15 | adantr 274 | . . . . . . . . 9 |
27 | xmetcl 13146 | . . . . . . . . 9 | |
28 | 21, 26, 23, 27 | syl3anc 1233 | . . . . . . . 8 |
29 | 2 | adantr 274 | . . . . . . . 8 |
30 | 3 | adantr 274 | . . . . . . . 8 |
31 | xlt2add 9837 | . . . . . . . 8 | |
32 | 25, 28, 29, 30, 31 | syl22anc 1234 | . . . . . . 7 |
33 | xmettri3 13168 | . . . . . . . . 9 | |
34 | 21, 22, 26, 23, 33 | syl13anc 1235 | . . . . . . . 8 |
35 | 6 | adantr 274 | . . . . . . . . 9 |
36 | 25, 28 | xaddcld 9841 | . . . . . . . . 9 |
37 | 4 | adantr 274 | . . . . . . . . 9 |
38 | xrlelttr 9763 | . . . . . . . . 9 | |
39 | 35, 36, 37, 38 | syl3anc 1233 | . . . . . . . 8 |
40 | 34, 39 | mpand 427 | . . . . . . 7 |
41 | 32, 40 | syld 45 | . . . . . 6 |
42 | 41 | expimpd 361 | . . . . 5 |
43 | 20, 42 | sylbid 149 | . . . 4 |
44 | 10, 43 | syl5bi 151 | . . 3 |
45 | 9, 44 | mtod 658 | . 2 |
46 | 45 | eq0rdv 3459 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 cin 3120 c0 3414 class class class wbr 3989 cfv 5198 (class class class)co 5853 cxr 7953 clt 7954 cle 7955 cxad 9727 cxmet 12774 cbl 12776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-map 6628 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-xadd 9730 df-psmet 12781 df-xmet 12782 df-bl 12784 |
This theorem is referenced by: bl2in 13197 |
Copyright terms: Public domain | W3C validator |