| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bldisj | Unicode version | ||
| Description: Two balls are disjoint if the center-to-center distance is more than the sum of the radii. (Contributed by Mario Carneiro, 30-Dec-2013.) |
| Ref | Expression |
|---|---|
| bldisj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr3 1007 |
. . . 4
| |
| 2 | simpr1 1005 |
. . . . . 6
| |
| 3 | simpr2 1006 |
. . . . . 6
| |
| 4 | 2, 3 | xaddcld 10005 |
. . . . 5
|
| 5 | xmetcl 14766 |
. . . . . 6
| |
| 6 | 5 | adantr 276 |
. . . . 5
|
| 7 | xrlenlt 8136 |
. . . . 5
| |
| 8 | 4, 6, 7 | syl2anc 411 |
. . . 4
|
| 9 | 1, 8 | mpbid 147 |
. . 3
|
| 10 | elin 3355 |
. . . 4
| |
| 11 | simpl1 1002 |
. . . . . . . 8
| |
| 12 | simpl2 1003 |
. . . . . . . 8
| |
| 13 | elbl 14805 |
. . . . . . . 8
| |
| 14 | 11, 12, 2, 13 | syl3anc 1249 |
. . . . . . 7
|
| 15 | simpl3 1004 |
. . . . . . . 8
| |
| 16 | elbl 14805 |
. . . . . . . 8
| |
| 17 | 11, 15, 3, 16 | syl3anc 1249 |
. . . . . . 7
|
| 18 | 14, 17 | anbi12d 473 |
. . . . . 6
|
| 19 | anandi 590 |
. . . . . 6
| |
| 20 | 18, 19 | bitr4di 198 |
. . . . 5
|
| 21 | 11 | adantr 276 |
. . . . . . . . 9
|
| 22 | 12 | adantr 276 |
. . . . . . . . 9
|
| 23 | simpr 110 |
. . . . . . . . 9
| |
| 24 | xmetcl 14766 |
. . . . . . . . 9
| |
| 25 | 21, 22, 23, 24 | syl3anc 1249 |
. . . . . . . 8
|
| 26 | 15 | adantr 276 |
. . . . . . . . 9
|
| 27 | xmetcl 14766 |
. . . . . . . . 9
| |
| 28 | 21, 26, 23, 27 | syl3anc 1249 |
. . . . . . . 8
|
| 29 | 2 | adantr 276 |
. . . . . . . 8
|
| 30 | 3 | adantr 276 |
. . . . . . . 8
|
| 31 | xlt2add 10001 |
. . . . . . . 8
| |
| 32 | 25, 28, 29, 30, 31 | syl22anc 1250 |
. . . . . . 7
|
| 33 | xmettri3 14788 |
. . . . . . . . 9
| |
| 34 | 21, 22, 26, 23, 33 | syl13anc 1251 |
. . . . . . . 8
|
| 35 | 6 | adantr 276 |
. . . . . . . . 9
|
| 36 | 25, 28 | xaddcld 10005 |
. . . . . . . . 9
|
| 37 | 4 | adantr 276 |
. . . . . . . . 9
|
| 38 | xrlelttr 9927 |
. . . . . . . . 9
| |
| 39 | 35, 36, 37, 38 | syl3anc 1249 |
. . . . . . . 8
|
| 40 | 34, 39 | mpand 429 |
. . . . . . 7
|
| 41 | 32, 40 | syld 45 |
. . . . . 6
|
| 42 | 41 | expimpd 363 |
. . . . 5
|
| 43 | 20, 42 | sylbid 150 |
. . . 4
|
| 44 | 10, 43 | biimtrid 152 |
. . 3
|
| 45 | 9, 44 | mtod 664 |
. 2
|
| 46 | 45 | eq0rdv 3504 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-i2m1 8029 ax-0id 8032 ax-rnegex 8033 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-po 4342 df-iso 4343 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-map 6736 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-xadd 9894 df-psmet 14247 df-xmet 14248 df-bl 14250 |
| This theorem is referenced by: bl2in 14817 |
| Copyright terms: Public domain | W3C validator |