ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bldisj Unicode version

Theorem bldisj 12570
Description: Two balls are disjoint if the center-to-center distance is more than the sum of the radii. (Contributed by Mario Carneiro, 30-Dec-2013.)
Assertion
Ref Expression
bldisj  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( ( P ( ball `  D
) R )  i^i  ( Q ( ball `  D ) S ) )  =  (/) )

Proof of Theorem bldisj
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpr3 989 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( R +e S )  <_ 
( P D Q ) )
2 simpr1 987 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  R  e.  RR* )
3 simpr2 988 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  S  e.  RR* )
42, 3xaddcld 9667 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( R +e S )  e. 
RR* )
5 xmetcl 12521 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  ->  ( P D Q )  e.  RR* )
65adantr 274 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( P D Q )  e.  RR* )
7 xrlenlt 7829 . . . . 5  |-  ( ( ( R +e
S )  e.  RR*  /\  ( P D Q )  e.  RR* )  ->  ( ( R +e S )  <_ 
( P D Q )  <->  -.  ( P D Q )  <  ( R +e S ) ) )
84, 6, 7syl2anc 408 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( ( R +e S )  <_  ( P D Q )  <->  -.  ( P D Q )  < 
( R +e
S ) ) )
91, 8mpbid 146 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  -.  ( P D Q )  <  ( R +e S ) )
10 elin 3259 . . . 4  |-  ( x  e.  ( ( P ( ball `  D
) R )  i^i  ( Q ( ball `  D ) S ) )  <->  ( x  e.  ( P ( ball `  D ) R )  /\  x  e.  ( Q ( ball `  D
) S ) ) )
11 simpl1 984 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  D  e.  ( *Met `  X
) )
12 simpl2 985 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  P  e.  X
)
13 elbl 12560 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  D
) R )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
1411, 12, 2, 13syl3anc 1216 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( x  e.  ( P ( ball `  D ) R )  <-> 
( x  e.  X  /\  ( P D x )  <  R ) ) )
15 simpl3 986 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  Q  e.  X
)
16 elbl 12560 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  Q  e.  X  /\  S  e.  RR* )  ->  ( x  e.  ( Q ( ball `  D
) S )  <->  ( x  e.  X  /\  ( Q D x )  < 
S ) ) )
1711, 15, 3, 16syl3anc 1216 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( x  e.  ( Q ( ball `  D ) S )  <-> 
( x  e.  X  /\  ( Q D x )  <  S ) ) )
1814, 17anbi12d 464 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( ( x  e.  ( P (
ball `  D ) R )  /\  x  e.  ( Q ( ball `  D ) S ) )  <->  ( ( x  e.  X  /\  ( P D x )  < 
R )  /\  (
x  e.  X  /\  ( Q D x )  <  S ) ) ) )
19 anandi 579 . . . . . 6  |-  ( ( x  e.  X  /\  ( ( P D x )  <  R  /\  ( Q D x )  <  S ) )  <->  ( ( x  e.  X  /\  ( P D x )  < 
R )  /\  (
x  e.  X  /\  ( Q D x )  <  S ) ) )
2018, 19syl6bbr 197 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( ( x  e.  ( P (
ball `  D ) R )  /\  x  e.  ( Q ( ball `  D ) S ) )  <->  ( x  e.  X  /\  ( ( P D x )  <  R  /\  ( Q D x )  < 
S ) ) ) )
2111adantr 274 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  D  e.  ( *Met `  X
) )
2212adantr 274 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  P  e.  X )
23 simpr 109 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  x  e.  X )
24 xmetcl 12521 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  x  e.  X
)  ->  ( P D x )  e. 
RR* )
2521, 22, 23, 24syl3anc 1216 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( P D x )  e. 
RR* )
2615adantr 274 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  Q  e.  X )
27 xmetcl 12521 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  Q  e.  X  /\  x  e.  X
)  ->  ( Q D x )  e. 
RR* )
2821, 26, 23, 27syl3anc 1216 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( Q D x )  e. 
RR* )
292adantr 274 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  R  e.  RR* )
303adantr 274 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  S  e.  RR* )
31 xlt2add 9663 . . . . . . . 8  |-  ( ( ( ( P D x )  e.  RR*  /\  ( Q D x )  e.  RR* )  /\  ( R  e.  RR*  /\  S  e.  RR* )
)  ->  ( (
( P D x )  <  R  /\  ( Q D x )  <  S )  -> 
( ( P D x ) +e
( Q D x ) )  <  ( R +e S ) ) )
3225, 28, 29, 30, 31syl22anc 1217 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( (
( P D x )  <  R  /\  ( Q D x )  <  S )  -> 
( ( P D x ) +e
( Q D x ) )  <  ( R +e S ) ) )
33 xmettri3 12543 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  ( P  e.  X  /\  Q  e.  X  /\  x  e.  X ) )  -> 
( P D Q )  <_  ( ( P D x ) +e ( Q D x ) ) )
3421, 22, 26, 23, 33syl13anc 1218 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( P D Q )  <_  (
( P D x ) +e ( Q D x ) ) )
356adantr 274 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( P D Q )  e.  RR* )
3625, 28xaddcld 9667 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( ( P D x ) +e ( Q D x ) )  e. 
RR* )
374adantr 274 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( R +e S )  e.  RR* )
38 xrlelttr 9589 . . . . . . . . 9  |-  ( ( ( P D Q )  e.  RR*  /\  (
( P D x ) +e ( Q D x ) )  e.  RR*  /\  ( R +e S )  e.  RR* )  ->  (
( ( P D Q )  <_  (
( P D x ) +e ( Q D x ) )  /\  ( ( P D x ) +e ( Q D x ) )  <  ( R +e S ) )  ->  ( P D Q )  <  ( R +e S ) ) )
3935, 36, 37, 38syl3anc 1216 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( (
( P D Q )  <_  ( ( P D x ) +e ( Q D x ) )  /\  ( ( P D x ) +e
( Q D x ) )  <  ( R +e S ) )  ->  ( P D Q )  <  ( R +e S ) ) )
4034, 39mpand 425 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( (
( P D x ) +e ( Q D x ) )  <  ( R +e S )  ->  ( P D Q )  <  ( R +e S ) ) )
4132, 40syld 45 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( (
( P D x )  <  R  /\  ( Q D x )  <  S )  -> 
( P D Q )  <  ( R +e S ) ) )
4241expimpd 360 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( ( x  e.  X  /\  (
( P D x )  <  R  /\  ( Q D x )  <  S ) )  ->  ( P D Q )  <  ( R +e S ) ) )
4320, 42sylbid 149 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( ( x  e.  ( P (
ball `  D ) R )  /\  x  e.  ( Q ( ball `  D ) S ) )  ->  ( P D Q )  <  ( R +e S ) ) )
4410, 43syl5bi 151 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( x  e.  ( ( P (
ball `  D ) R )  i^i  ( Q ( ball `  D
) S ) )  ->  ( P D Q )  <  ( R +e S ) ) )
459, 44mtod 652 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  -.  x  e.  ( ( P (
ball `  D ) R )  i^i  ( Q ( ball `  D
) S ) ) )
4645eq0rdv 3407 1  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( ( P ( ball `  D
) R )  i^i  ( Q ( ball `  D ) S ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480    i^i cin 3070   (/)c0 3363   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   RR*cxr 7799    < clt 7800    <_ cle 7801   +ecxad 9557   *Metcxmet 12149   ballcbl 12151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-i2m1 7725  ax-0id 7728  ax-rnegex 7729  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-xadd 9560  df-psmet 12156  df-xmet 12157  df-bl 12159
This theorem is referenced by:  bl2in  12572
  Copyright terms: Public domain W3C validator