| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bldisj | Unicode version | ||
| Description: Two balls are disjoint if the center-to-center distance is more than the sum of the radii. (Contributed by Mario Carneiro, 30-Dec-2013.) |
| Ref | Expression |
|---|---|
| bldisj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr3 1029 |
. . . 4
| |
| 2 | simpr1 1027 |
. . . . . 6
| |
| 3 | simpr2 1028 |
. . . . . 6
| |
| 4 | 2, 3 | xaddcld 10076 |
. . . . 5
|
| 5 | xmetcl 15020 |
. . . . . 6
| |
| 6 | 5 | adantr 276 |
. . . . 5
|
| 7 | xrlenlt 8207 |
. . . . 5
| |
| 8 | 4, 6, 7 | syl2anc 411 |
. . . 4
|
| 9 | 1, 8 | mpbid 147 |
. . 3
|
| 10 | elin 3387 |
. . . 4
| |
| 11 | simpl1 1024 |
. . . . . . . 8
| |
| 12 | simpl2 1025 |
. . . . . . . 8
| |
| 13 | elbl 15059 |
. . . . . . . 8
| |
| 14 | 11, 12, 2, 13 | syl3anc 1271 |
. . . . . . 7
|
| 15 | simpl3 1026 |
. . . . . . . 8
| |
| 16 | elbl 15059 |
. . . . . . . 8
| |
| 17 | 11, 15, 3, 16 | syl3anc 1271 |
. . . . . . 7
|
| 18 | 14, 17 | anbi12d 473 |
. . . . . 6
|
| 19 | anandi 592 |
. . . . . 6
| |
| 20 | 18, 19 | bitr4di 198 |
. . . . 5
|
| 21 | 11 | adantr 276 |
. . . . . . . . 9
|
| 22 | 12 | adantr 276 |
. . . . . . . . 9
|
| 23 | simpr 110 |
. . . . . . . . 9
| |
| 24 | xmetcl 15020 |
. . . . . . . . 9
| |
| 25 | 21, 22, 23, 24 | syl3anc 1271 |
. . . . . . . 8
|
| 26 | 15 | adantr 276 |
. . . . . . . . 9
|
| 27 | xmetcl 15020 |
. . . . . . . . 9
| |
| 28 | 21, 26, 23, 27 | syl3anc 1271 |
. . . . . . . 8
|
| 29 | 2 | adantr 276 |
. . . . . . . 8
|
| 30 | 3 | adantr 276 |
. . . . . . . 8
|
| 31 | xlt2add 10072 |
. . . . . . . 8
| |
| 32 | 25, 28, 29, 30, 31 | syl22anc 1272 |
. . . . . . 7
|
| 33 | xmettri3 15042 |
. . . . . . . . 9
| |
| 34 | 21, 22, 26, 23, 33 | syl13anc 1273 |
. . . . . . . 8
|
| 35 | 6 | adantr 276 |
. . . . . . . . 9
|
| 36 | 25, 28 | xaddcld 10076 |
. . . . . . . . 9
|
| 37 | 4 | adantr 276 |
. . . . . . . . 9
|
| 38 | xrlelttr 9998 |
. . . . . . . . 9
| |
| 39 | 35, 36, 37, 38 | syl3anc 1271 |
. . . . . . . 8
|
| 40 | 34, 39 | mpand 429 |
. . . . . . 7
|
| 41 | 32, 40 | syld 45 |
. . . . . 6
|
| 42 | 41 | expimpd 363 |
. . . . 5
|
| 43 | 20, 42 | sylbid 150 |
. . . 4
|
| 44 | 10, 43 | biimtrid 152 |
. . 3
|
| 45 | 9, 44 | mtod 667 |
. 2
|
| 46 | 45 | eq0rdv 3536 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-i2m1 8100 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-map 6795 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-xadd 9965 df-psmet 14501 df-xmet 14502 df-bl 14504 |
| This theorem is referenced by: bl2in 15071 |
| Copyright terms: Public domain | W3C validator |