ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bldisj Unicode version

Theorem bldisj 12329
Description: Two balls are disjoint if the center-to-center distance is more than the sum of the radii. (Contributed by Mario Carneiro, 30-Dec-2013.)
Assertion
Ref Expression
bldisj  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( ( P ( ball `  D
) R )  i^i  ( Q ( ball `  D ) S ) )  =  (/) )

Proof of Theorem bldisj
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpr3 957 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( R +e S )  <_ 
( P D Q ) )
2 simpr1 955 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  R  e.  RR* )
3 simpr2 956 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  S  e.  RR* )
42, 3xaddcld 9508 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( R +e S )  e. 
RR* )
5 xmetcl 12280 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  ->  ( P D Q )  e.  RR* )
65adantr 272 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( P D Q )  e.  RR* )
7 xrlenlt 7701 . . . . 5  |-  ( ( ( R +e
S )  e.  RR*  /\  ( P D Q )  e.  RR* )  ->  ( ( R +e S )  <_ 
( P D Q )  <->  -.  ( P D Q )  <  ( R +e S ) ) )
84, 6, 7syl2anc 406 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( ( R +e S )  <_  ( P D Q )  <->  -.  ( P D Q )  < 
( R +e
S ) ) )
91, 8mpbid 146 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  -.  ( P D Q )  <  ( R +e S ) )
10 elin 3206 . . . 4  |-  ( x  e.  ( ( P ( ball `  D
) R )  i^i  ( Q ( ball `  D ) S ) )  <->  ( x  e.  ( P ( ball `  D ) R )  /\  x  e.  ( Q ( ball `  D
) S ) ) )
11 simpl1 952 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  D  e.  ( *Met `  X
) )
12 simpl2 953 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  P  e.  X
)
13 elbl 12319 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  D
) R )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
1411, 12, 2, 13syl3anc 1184 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( x  e.  ( P ( ball `  D ) R )  <-> 
( x  e.  X  /\  ( P D x )  <  R ) ) )
15 simpl3 954 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  Q  e.  X
)
16 elbl 12319 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  Q  e.  X  /\  S  e.  RR* )  ->  ( x  e.  ( Q ( ball `  D
) S )  <->  ( x  e.  X  /\  ( Q D x )  < 
S ) ) )
1711, 15, 3, 16syl3anc 1184 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( x  e.  ( Q ( ball `  D ) S )  <-> 
( x  e.  X  /\  ( Q D x )  <  S ) ) )
1814, 17anbi12d 460 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( ( x  e.  ( P (
ball `  D ) R )  /\  x  e.  ( Q ( ball `  D ) S ) )  <->  ( ( x  e.  X  /\  ( P D x )  < 
R )  /\  (
x  e.  X  /\  ( Q D x )  <  S ) ) ) )
19 anandi 560 . . . . . 6  |-  ( ( x  e.  X  /\  ( ( P D x )  <  R  /\  ( Q D x )  <  S ) )  <->  ( ( x  e.  X  /\  ( P D x )  < 
R )  /\  (
x  e.  X  /\  ( Q D x )  <  S ) ) )
2018, 19syl6bbr 197 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( ( x  e.  ( P (
ball `  D ) R )  /\  x  e.  ( Q ( ball `  D ) S ) )  <->  ( x  e.  X  /\  ( ( P D x )  <  R  /\  ( Q D x )  < 
S ) ) ) )
2111adantr 272 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  D  e.  ( *Met `  X
) )
2212adantr 272 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  P  e.  X )
23 simpr 109 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  x  e.  X )
24 xmetcl 12280 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  x  e.  X
)  ->  ( P D x )  e. 
RR* )
2521, 22, 23, 24syl3anc 1184 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( P D x )  e. 
RR* )
2615adantr 272 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  Q  e.  X )
27 xmetcl 12280 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  Q  e.  X  /\  x  e.  X
)  ->  ( Q D x )  e. 
RR* )
2821, 26, 23, 27syl3anc 1184 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( Q D x )  e. 
RR* )
292adantr 272 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  R  e.  RR* )
303adantr 272 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  S  e.  RR* )
31 xlt2add 9504 . . . . . . . 8  |-  ( ( ( ( P D x )  e.  RR*  /\  ( Q D x )  e.  RR* )  /\  ( R  e.  RR*  /\  S  e.  RR* )
)  ->  ( (
( P D x )  <  R  /\  ( Q D x )  <  S )  -> 
( ( P D x ) +e
( Q D x ) )  <  ( R +e S ) ) )
3225, 28, 29, 30, 31syl22anc 1185 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( (
( P D x )  <  R  /\  ( Q D x )  <  S )  -> 
( ( P D x ) +e
( Q D x ) )  <  ( R +e S ) ) )
33 xmettri3 12302 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  ( P  e.  X  /\  Q  e.  X  /\  x  e.  X ) )  -> 
( P D Q )  <_  ( ( P D x ) +e ( Q D x ) ) )
3421, 22, 26, 23, 33syl13anc 1186 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( P D Q )  <_  (
( P D x ) +e ( Q D x ) ) )
356adantr 272 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( P D Q )  e.  RR* )
3625, 28xaddcld 9508 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( ( P D x ) +e ( Q D x ) )  e. 
RR* )
374adantr 272 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( R +e S )  e.  RR* )
38 xrlelttr 9430 . . . . . . . . 9  |-  ( ( ( P D Q )  e.  RR*  /\  (
( P D x ) +e ( Q D x ) )  e.  RR*  /\  ( R +e S )  e.  RR* )  ->  (
( ( P D Q )  <_  (
( P D x ) +e ( Q D x ) )  /\  ( ( P D x ) +e ( Q D x ) )  <  ( R +e S ) )  ->  ( P D Q )  <  ( R +e S ) ) )
3935, 36, 37, 38syl3anc 1184 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( (
( P D Q )  <_  ( ( P D x ) +e ( Q D x ) )  /\  ( ( P D x ) +e
( Q D x ) )  <  ( R +e S ) )  ->  ( P D Q )  <  ( R +e S ) ) )
4034, 39mpand 423 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( (
( P D x ) +e ( Q D x ) )  <  ( R +e S )  ->  ( P D Q )  <  ( R +e S ) ) )
4132, 40syld 45 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( (
( P D x )  <  R  /\  ( Q D x )  <  S )  -> 
( P D Q )  <  ( R +e S ) ) )
4241expimpd 358 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( ( x  e.  X  /\  (
( P D x )  <  R  /\  ( Q D x )  <  S ) )  ->  ( P D Q )  <  ( R +e S ) ) )
4320, 42sylbid 149 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( ( x  e.  ( P (
ball `  D ) R )  /\  x  e.  ( Q ( ball `  D ) S ) )  ->  ( P D Q )  <  ( R +e S ) ) )
4410, 43syl5bi 151 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( x  e.  ( ( P (
ball `  D ) R )  i^i  ( Q ( ball `  D
) S ) )  ->  ( P D Q )  <  ( R +e S ) ) )
459, 44mtod 630 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  -.  x  e.  ( ( P (
ball `  D ) R )  i^i  ( Q ( ball `  D
) S ) ) )
4645eq0rdv 3354 1  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( ( P ( ball `  D
) R )  i^i  ( Q ( ball `  D ) S ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 930    = wceq 1299    e. wcel 1448    i^i cin 3020   (/)c0 3310   class class class wbr 3875   ` cfv 5059  (class class class)co 5706   RR*cxr 7671    < clt 7672    <_ cle 7673   +ecxad 9398   *Metcxmet 11931   ballcbl 11933
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-addcom 7595  ax-addass 7597  ax-i2m1 7600  ax-0id 7603  ax-rnegex 7604  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-po 4156  df-iso 4157  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-map 6474  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-xadd 9401  df-psmet 11938  df-xmet 11939  df-bl 11941
This theorem is referenced by:  bl2in  12331
  Copyright terms: Public domain W3C validator