ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bldisj Unicode version

Theorem bldisj 12942
Description: Two balls are disjoint if the center-to-center distance is more than the sum of the radii. (Contributed by Mario Carneiro, 30-Dec-2013.)
Assertion
Ref Expression
bldisj  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( ( P ( ball `  D
) R )  i^i  ( Q ( ball `  D ) S ) )  =  (/) )

Proof of Theorem bldisj
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpr3 994 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( R +e S )  <_ 
( P D Q ) )
2 simpr1 992 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  R  e.  RR* )
3 simpr2 993 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  S  e.  RR* )
42, 3xaddcld 9811 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( R +e S )  e. 
RR* )
5 xmetcl 12893 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X
)  ->  ( P D Q )  e.  RR* )
65adantr 274 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( P D Q )  e.  RR* )
7 xrlenlt 7954 . . . . 5  |-  ( ( ( R +e
S )  e.  RR*  /\  ( P D Q )  e.  RR* )  ->  ( ( R +e S )  <_ 
( P D Q )  <->  -.  ( P D Q )  <  ( R +e S ) ) )
84, 6, 7syl2anc 409 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( ( R +e S )  <_  ( P D Q )  <->  -.  ( P D Q )  < 
( R +e
S ) ) )
91, 8mpbid 146 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  -.  ( P D Q )  <  ( R +e S ) )
10 elin 3300 . . . 4  |-  ( x  e.  ( ( P ( ball `  D
) R )  i^i  ( Q ( ball `  D ) S ) )  <->  ( x  e.  ( P ( ball `  D ) R )  /\  x  e.  ( Q ( ball `  D
) S ) ) )
11 simpl1 989 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  D  e.  ( *Met `  X
) )
12 simpl2 990 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  P  e.  X
)
13 elbl 12932 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  D
) R )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
1411, 12, 2, 13syl3anc 1227 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( x  e.  ( P ( ball `  D ) R )  <-> 
( x  e.  X  /\  ( P D x )  <  R ) ) )
15 simpl3 991 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  Q  e.  X
)
16 elbl 12932 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  Q  e.  X  /\  S  e.  RR* )  ->  ( x  e.  ( Q ( ball `  D
) S )  <->  ( x  e.  X  /\  ( Q D x )  < 
S ) ) )
1711, 15, 3, 16syl3anc 1227 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( x  e.  ( Q ( ball `  D ) S )  <-> 
( x  e.  X  /\  ( Q D x )  <  S ) ) )
1814, 17anbi12d 465 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( ( x  e.  ( P (
ball `  D ) R )  /\  x  e.  ( Q ( ball `  D ) S ) )  <->  ( ( x  e.  X  /\  ( P D x )  < 
R )  /\  (
x  e.  X  /\  ( Q D x )  <  S ) ) ) )
19 anandi 580 . . . . . 6  |-  ( ( x  e.  X  /\  ( ( P D x )  <  R  /\  ( Q D x )  <  S ) )  <->  ( ( x  e.  X  /\  ( P D x )  < 
R )  /\  (
x  e.  X  /\  ( Q D x )  <  S ) ) )
2018, 19bitr4di 197 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( ( x  e.  ( P (
ball `  D ) R )  /\  x  e.  ( Q ( ball `  D ) S ) )  <->  ( x  e.  X  /\  ( ( P D x )  <  R  /\  ( Q D x )  < 
S ) ) ) )
2111adantr 274 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  D  e.  ( *Met `  X
) )
2212adantr 274 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  P  e.  X )
23 simpr 109 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  x  e.  X )
24 xmetcl 12893 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  x  e.  X
)  ->  ( P D x )  e. 
RR* )
2521, 22, 23, 24syl3anc 1227 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( P D x )  e. 
RR* )
2615adantr 274 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  Q  e.  X )
27 xmetcl 12893 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  Q  e.  X  /\  x  e.  X
)  ->  ( Q D x )  e. 
RR* )
2821, 26, 23, 27syl3anc 1227 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( Q D x )  e. 
RR* )
292adantr 274 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  R  e.  RR* )
303adantr 274 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  S  e.  RR* )
31 xlt2add 9807 . . . . . . . 8  |-  ( ( ( ( P D x )  e.  RR*  /\  ( Q D x )  e.  RR* )  /\  ( R  e.  RR*  /\  S  e.  RR* )
)  ->  ( (
( P D x )  <  R  /\  ( Q D x )  <  S )  -> 
( ( P D x ) +e
( Q D x ) )  <  ( R +e S ) ) )
3225, 28, 29, 30, 31syl22anc 1228 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( (
( P D x )  <  R  /\  ( Q D x )  <  S )  -> 
( ( P D x ) +e
( Q D x ) )  <  ( R +e S ) ) )
33 xmettri3 12915 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  ( P  e.  X  /\  Q  e.  X  /\  x  e.  X ) )  -> 
( P D Q )  <_  ( ( P D x ) +e ( Q D x ) ) )
3421, 22, 26, 23, 33syl13anc 1229 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( P D Q )  <_  (
( P D x ) +e ( Q D x ) ) )
356adantr 274 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( P D Q )  e.  RR* )
3625, 28xaddcld 9811 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( ( P D x ) +e ( Q D x ) )  e. 
RR* )
374adantr 274 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( R +e S )  e.  RR* )
38 xrlelttr 9733 . . . . . . . . 9  |-  ( ( ( P D Q )  e.  RR*  /\  (
( P D x ) +e ( Q D x ) )  e.  RR*  /\  ( R +e S )  e.  RR* )  ->  (
( ( P D Q )  <_  (
( P D x ) +e ( Q D x ) )  /\  ( ( P D x ) +e ( Q D x ) )  <  ( R +e S ) )  ->  ( P D Q )  <  ( R +e S ) ) )
3935, 36, 37, 38syl3anc 1227 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( (
( P D Q )  <_  ( ( P D x ) +e ( Q D x ) )  /\  ( ( P D x ) +e
( Q D x ) )  <  ( R +e S ) )  ->  ( P D Q )  <  ( R +e S ) ) )
4034, 39mpand 426 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( (
( P D x ) +e ( Q D x ) )  <  ( R +e S )  ->  ( P D Q )  <  ( R +e S ) ) )
4132, 40syld 45 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  Q  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  /\  x  e.  X
)  ->  ( (
( P D x )  <  R  /\  ( Q D x )  <  S )  -> 
( P D Q )  <  ( R +e S ) ) )
4241expimpd 361 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( ( x  e.  X  /\  (
( P D x )  <  R  /\  ( Q D x )  <  S ) )  ->  ( P D Q )  <  ( R +e S ) ) )
4320, 42sylbid 149 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( ( x  e.  ( P (
ball `  D ) R )  /\  x  e.  ( Q ( ball `  D ) S ) )  ->  ( P D Q )  <  ( R +e S ) ) )
4410, 43syl5bi 151 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( x  e.  ( ( P (
ball `  D ) R )  i^i  ( Q ( ball `  D
) S ) )  ->  ( P D Q )  <  ( R +e S ) ) )
459, 44mtod 653 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  -.  x  e.  ( ( P (
ball `  D ) R )  i^i  ( Q ( ball `  D
) S ) ) )
4645eq0rdv 3448 1  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  Q  e.  X
)  /\  ( R  e.  RR*  /\  S  e. 
RR*  /\  ( R +e S )  <_  ( P D Q ) ) )  ->  ( ( P ( ball `  D
) R )  i^i  ( Q ( ball `  D ) S ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 967    = wceq 1342    e. wcel 2135    i^i cin 3110   (/)c0 3404   class class class wbr 3976   ` cfv 5182  (class class class)co 5836   RR*cxr 7923    < clt 7924    <_ cle 7925   +ecxad 9697   *Metcxmet 12521   ballcbl 12523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-addcom 7844  ax-addass 7846  ax-i2m1 7849  ax-0id 7852  ax-rnegex 7853  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-po 4268  df-iso 4269  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-map 6607  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-xadd 9700  df-psmet 12528  df-xmet 12529  df-bl 12531
This theorem is referenced by:  bl2in  12944
  Copyright terms: Public domain W3C validator