ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blininf Unicode version

Theorem blininf 12965
Description: The intersection of two balls with the same center is the smaller of them. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blininf  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( ( P (
ball `  D ) R )  i^i  ( P ( ball `  D
) S ) )  =  ( P (
ball `  D )inf ( { R ,  S } ,  RR* ,  <  ) ) )

Proof of Theorem blininf
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 xmetcl 12893 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  x  e.  X
)  ->  ( P D x )  e. 
RR* )
213expa 1192 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  x  e.  X )  ->  ( P D x )  e. 
RR* )
32adantlr 469 . . . . 5  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  /\  x  e.  X )  ->  ( P D x )  e.  RR* )
4 simplrl 525 . . . . 5  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  /\  x  e.  X )  ->  R  e.  RR* )
5 simplrr 526 . . . . 5  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  /\  x  e.  X )  ->  S  e.  RR* )
6 xrltmininf 11197 . . . . 5  |-  ( ( ( P D x )  e.  RR*  /\  R  e.  RR*  /\  S  e. 
RR* )  ->  (
( P D x )  < inf ( { R ,  S } ,  RR* ,  <  )  <->  ( ( P D x )  <  R  /\  ( P D x )  <  S ) ) )
73, 4, 5, 6syl3anc 1227 . . . 4  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  /\  x  e.  X )  ->  ( ( P D x )  < inf ( { R ,  S } ,  RR* ,  <  )  <->  ( ( P D x )  <  R  /\  ( P D x )  <  S ) ) )
87pm5.32da 448 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( ( x  e.  X  /\  ( P D x )  < inf ( { R ,  S } ,  RR* ,  <  ) )  <->  ( x  e.  X  /\  ( ( P D x )  <  R  /\  ( P D x )  < 
S ) ) ) )
9 xrmincl 11193 . . . 4  |-  ( ( R  e.  RR*  /\  S  e.  RR* )  -> inf ( { R ,  S } ,  RR* ,  <  )  e.  RR* )
10 elbl 12932 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\ inf ( { R ,  S } ,  RR* ,  <  )  e.  RR* )  ->  (
x  e.  ( P ( ball `  D
)inf ( { R ,  S } ,  RR* ,  <  ) )  <->  ( x  e.  X  /\  ( P D x )  < inf ( { R ,  S } ,  RR* ,  <  ) ) ) )
11103expa 1192 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\ inf ( { R ,  S } ,  RR* ,  <  )  e.  RR* )  ->  (
x  e.  ( P ( ball `  D
)inf ( { R ,  S } ,  RR* ,  <  ) )  <->  ( x  e.  X  /\  ( P D x )  < inf ( { R ,  S } ,  RR* ,  <  ) ) ) )
129, 11sylan2 284 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( x  e.  ( P ( ball `  D
)inf ( { R ,  S } ,  RR* ,  <  ) )  <->  ( x  e.  X  /\  ( P D x )  < inf ( { R ,  S } ,  RR* ,  <  ) ) ) )
13 elbl 12932 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  D
) R )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
14133expa 1192 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  R  e.  RR* )  ->  (
x  e.  ( P ( ball `  D
) R )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
1514adantrr 471 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( x  e.  ( P ( ball `  D
) R )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
16 elbl 12932 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  S  e.  RR* )  ->  ( x  e.  ( P ( ball `  D
) S )  <->  ( x  e.  X  /\  ( P D x )  < 
S ) ) )
17163expa 1192 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  S  e.  RR* )  ->  (
x  e.  ( P ( ball `  D
) S )  <->  ( x  e.  X  /\  ( P D x )  < 
S ) ) )
1817adantrl 470 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( x  e.  ( P ( ball `  D
) S )  <->  ( x  e.  X  /\  ( P D x )  < 
S ) ) )
1915, 18anbi12d 465 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( ( x  e.  ( P ( ball `  D ) R )  /\  x  e.  ( P ( ball `  D
) S ) )  <-> 
( ( x  e.  X  /\  ( P D x )  < 
R )  /\  (
x  e.  X  /\  ( P D x )  <  S ) ) ) )
20 elin 3300 . . . 4  |-  ( x  e.  ( ( P ( ball `  D
) R )  i^i  ( P ( ball `  D ) S ) )  <->  ( x  e.  ( P ( ball `  D ) R )  /\  x  e.  ( P ( ball `  D
) S ) ) )
21 anandi 580 . . . 4  |-  ( ( x  e.  X  /\  ( ( P D x )  <  R  /\  ( P D x )  <  S ) )  <->  ( ( x  e.  X  /\  ( P D x )  < 
R )  /\  (
x  e.  X  /\  ( P D x )  <  S ) ) )
2219, 20, 213bitr4g 222 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( x  e.  ( ( P ( ball `  D ) R )  i^i  ( P (
ball `  D ) S ) )  <->  ( x  e.  X  /\  (
( P D x )  <  R  /\  ( P D x )  <  S ) ) ) )
238, 12, 223bitr4rd 220 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( x  e.  ( ( P ( ball `  D ) R )  i^i  ( P (
ball `  D ) S ) )  <->  x  e.  ( P ( ball `  D
)inf ( { R ,  S } ,  RR* ,  <  ) ) ) )
2423eqrdv 2162 1  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( ( P (
ball `  D ) R )  i^i  ( P ( ball `  D
) S ) )  =  ( P (
ball `  D )inf ( { R ,  S } ,  RR* ,  <  ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1342    e. wcel 2135    i^i cin 3110   {cpr 3571   class class class wbr 3976   ` cfv 5182  (class class class)co 5836  infcinf 6939   RR*cxr 7923    < clt 7924   *Metcxmet 12521   ballcbl 12523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863  ax-caucvg 7864
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-isom 5191  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-map 6607  df-sup 6940  df-inf 6941  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-3 8908  df-4 8909  df-n0 9106  df-z 9183  df-uz 9458  df-rp 9581  df-xneg 9699  df-seqfrec 10371  df-exp 10445  df-cj 10770  df-re 10771  df-im 10772  df-rsqrt 10926  df-abs 10927  df-psmet 12528  df-xmet 12529  df-bl 12531
This theorem is referenced by:  blin2  12973
  Copyright terms: Public domain W3C validator