ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  an42s Unicode version

Theorem an42s 584
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.)
Hypothesis
Ref Expression
an41r3s.1  |-  ( ( ( ph  /\  ps )  /\  ( ch  /\  th ) )  ->  ta )
Assertion
Ref Expression
an42s  |-  ( ( ( ph  /\  ch )  /\  ( th  /\  ps ) )  ->  ta )

Proof of Theorem an42s
StepHypRef Expression
1 an41r3s.1 . . 3  |-  ( ( ( ph  /\  ps )  /\  ( ch  /\  th ) )  ->  ta )
21an4s 583 . 2  |-  ( ( ( ph  /\  ch )  /\  ( ps  /\  th ) )  ->  ta )
32ancom2s 561 1  |-  ( ( ( ph  /\  ch )  /\  ( th  /\  ps ) )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  nnmsucr  6464  ecopoveq  6604  enqdc  7310  addcmpblnq  7316  addpipqqslem  7318  addpipqqs  7319  addclnq  7324  addcomnqg  7330  distrnqg  7336  recexnq  7339  ltdcnq  7346  ltexnqq  7357  enq0enq  7380  enq0sym  7381  enq0breq  7385  addclnq0  7400  distrnq0  7408  mulclsr  7703  axmulass  7822  axdistr  7823  subadd4  8150  mulsub  8307  mgmidmo  12612  tgcl  12779
  Copyright terms: Public domain W3C validator