ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnaord Unicode version

Theorem nnaord 6562
Description: Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers, and its converse. (Contributed by NM, 7-Mar-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaord  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  e.  B  <->  ( C  +o  A )  e.  ( C  +o  B ) ) )

Proof of Theorem nnaord
StepHypRef Expression
1 nnaordi 6561 . . 3  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( A  e.  B  ->  ( C  +o  A
)  e.  ( C  +o  B ) ) )
213adant1 1017 . 2  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  e.  B  ->  ( C  +o  A )  e.  ( C  +o  B ) ) )
3 oveq2 5926 . . . . . 6  |-  ( A  =  B  ->  ( C  +o  A )  =  ( C  +o  B
) )
43a1i 9 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  =  B  ->  ( C  +o  A )  =  ( C  +o  B ) ) )
5 nnaordi 6561 . . . . . 6  |-  ( ( A  e.  om  /\  C  e.  om )  ->  ( B  e.  A  ->  ( C  +o  B
)  e.  ( C  +o  A ) ) )
653adant2 1018 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( B  e.  A  ->  ( C  +o  B )  e.  ( C  +o  A ) ) )
74, 6orim12d 787 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  =  B  \/  B  e.  A
)  ->  ( ( C  +o  A )  =  ( C  +o  B
)  \/  ( C  +o  B )  e.  ( C  +o  A
) ) ) )
87con3d 632 . . 3  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( -.  ( ( C  +o  A )  =  ( C  +o  B )  \/  ( C  +o  B )  e.  ( C  +o  A ) )  ->  -.  ( A  =  B  \/  B  e.  A )
) )
9 df-3an 982 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  <->  ( ( A  e.  om  /\  B  e.  om )  /\  C  e.  om ) )
10 ancom 266 . . . . . 6  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  C  e.  om ) 
<->  ( C  e.  om  /\  ( A  e.  om  /\  B  e.  om )
) )
11 anandi 590 . . . . . 6  |-  ( ( C  e.  om  /\  ( A  e.  om  /\  B  e.  om )
)  <->  ( ( C  e.  om  /\  A  e.  om )  /\  ( C  e.  om  /\  B  e.  om ) ) )
129, 10, 113bitri 206 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  <->  ( ( C  e.  om  /\  A  e.  om )  /\  ( C  e.  om  /\  B  e.  om ) ) )
13 nnacl 6533 . . . . . 6  |-  ( ( C  e.  om  /\  A  e.  om )  ->  ( C  +o  A
)  e.  om )
14 nnacl 6533 . . . . . 6  |-  ( ( C  e.  om  /\  B  e.  om )  ->  ( C  +o  B
)  e.  om )
1513, 14anim12i 338 . . . . 5  |-  ( ( ( C  e.  om  /\  A  e.  om )  /\  ( C  e.  om  /\  B  e.  om )
)  ->  ( ( C  +o  A )  e. 
om  /\  ( C  +o  B )  e.  om ) )
1612, 15sylbi 121 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( C  +o  A
)  e.  om  /\  ( C  +o  B
)  e.  om )
)
17 nntri2 6547 . . . 4  |-  ( ( ( C  +o  A
)  e.  om  /\  ( C  +o  B
)  e.  om )  ->  ( ( C  +o  A )  e.  ( C  +o  B )  <->  -.  ( ( C  +o  A )  =  ( C  +o  B )  \/  ( C  +o  B )  e.  ( C  +o  A ) ) ) )
1816, 17syl 14 . . 3  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( C  +o  A
)  e.  ( C  +o  B )  <->  -.  (
( C  +o  A
)  =  ( C  +o  B )  \/  ( C  +o  B
)  e.  ( C  +o  A ) ) ) )
19 nntri2 6547 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  <->  -.  ( A  =  B  \/  B  e.  A
) ) )
20193adant3 1019 . . 3  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  e.  B  <->  -.  ( A  =  B  \/  B  e.  A )
) )
218, 18, 203imtr4d 203 . 2  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( C  +o  A
)  e.  ( C  +o  B )  ->  A  e.  B )
)
222, 21impbid 129 1  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  e.  B  <->  ( C  +o  A )  e.  ( C  +o  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2164   omcom 4622  (class class class)co 5918    +o coa 6466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-oadd 6473
This theorem is referenced by:  nnaordr  6563  nnaordex  6581  ltapig  7398  1lt2pi  7400
  Copyright terms: Public domain W3C validator