| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnaord | Unicode version | ||
| Description: Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers, and its converse. (Contributed by NM, 7-Mar-1996.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| nnaord |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnaordi 6617 |
. . 3
| |
| 2 | 1 | 3adant1 1018 |
. 2
|
| 3 | oveq2 5975 |
. . . . . 6
| |
| 4 | 3 | a1i 9 |
. . . . 5
|
| 5 | nnaordi 6617 |
. . . . . 6
| |
| 6 | 5 | 3adant2 1019 |
. . . . 5
|
| 7 | 4, 6 | orim12d 788 |
. . . 4
|
| 8 | 7 | con3d 632 |
. . 3
|
| 9 | df-3an 983 |
. . . . . 6
| |
| 10 | ancom 266 |
. . . . . 6
| |
| 11 | anandi 590 |
. . . . . 6
| |
| 12 | 9, 10, 11 | 3bitri 206 |
. . . . 5
|
| 13 | nnacl 6589 |
. . . . . 6
| |
| 14 | nnacl 6589 |
. . . . . 6
| |
| 15 | 13, 14 | anim12i 338 |
. . . . 5
|
| 16 | 12, 15 | sylbi 121 |
. . . 4
|
| 17 | nntri2 6603 |
. . . 4
| |
| 18 | 16, 17 | syl 14 |
. . 3
|
| 19 | nntri2 6603 |
. . . 4
| |
| 20 | 19 | 3adant3 1020 |
. . 3
|
| 21 | 8, 18, 20 | 3imtr4d 203 |
. 2
|
| 22 | 2, 21 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-oadd 6529 |
| This theorem is referenced by: nnaordr 6619 nnaordex 6637 ltapig 7486 1lt2pi 7488 |
| Copyright terms: Public domain | W3C validator |