ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpin Unicode version

Theorem ixpin 6625
Description: The intersection of two infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015.)
Assertion
Ref Expression
ixpin  |-  X_ x  e.  A  ( B  i^i  C )  =  (
X_ x  e.  A  B  i^i  X_ x  e.  A  C )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem ixpin
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 anandi 580 . . . 4  |-  ( ( f  Fn  A  /\  ( A. x  e.  A  ( f `  x
)  e.  B  /\  A. x  e.  A  ( f `  x )  e.  C ) )  <-> 
( ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  B
)  /\  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  C
) ) )
2 elin 3264 . . . . . . 7  |-  ( ( f `  x )  e.  ( B  i^i  C )  <->  ( ( f `
 x )  e.  B  /\  ( f `
 x )  e.  C ) )
32ralbii 2444 . . . . . 6  |-  ( A. x  e.  A  (
f `  x )  e.  ( B  i^i  C
)  <->  A. x  e.  A  ( ( f `  x )  e.  B  /\  ( f `  x
)  e.  C ) )
4 r19.26 2561 . . . . . 6  |-  ( A. x  e.  A  (
( f `  x
)  e.  B  /\  ( f `  x
)  e.  C )  <-> 
( A. x  e.  A  ( f `  x )  e.  B  /\  A. x  e.  A  ( f `  x
)  e.  C ) )
53, 4bitri 183 . . . . 5  |-  ( A. x  e.  A  (
f `  x )  e.  ( B  i^i  C
)  <->  ( A. x  e.  A  ( f `  x )  e.  B  /\  A. x  e.  A  ( f `  x
)  e.  C ) )
65anbi2i 453 . . . 4  |-  ( ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  ( B  i^i  C ) )  <->  ( f  Fn  A  /\  ( A. x  e.  A  ( f `  x
)  e.  B  /\  A. x  e.  A  ( f `  x )  e.  C ) ) )
7 vex 2692 . . . . . 6  |-  f  e. 
_V
87elixp 6607 . . . . 5  |-  ( f  e.  X_ x  e.  A  B 
<->  ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  B ) )
97elixp 6607 . . . . 5  |-  ( f  e.  X_ x  e.  A  C 
<->  ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  C ) )
108, 9anbi12i 456 . . . 4  |-  ( ( f  e.  X_ x  e.  A  B  /\  f  e.  X_ x  e.  A  C )  <->  ( (
f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  B )  /\  ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  C ) ) )
111, 6, 103bitr4i 211 . . 3  |-  ( ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  ( B  i^i  C ) )  <->  ( f  e.  X_ x  e.  A  B  /\  f  e.  X_ x  e.  A  C
) )
127elixp 6607 . . 3  |-  ( f  e.  X_ x  e.  A  ( B  i^i  C )  <-> 
( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  ( B  i^i  C ) ) )
13 elin 3264 . . 3  |-  ( f  e.  ( X_ x  e.  A  B  i^i  X_ x  e.  A  C
)  <->  ( f  e.  X_ x  e.  A  B  /\  f  e.  X_ x  e.  A  C
) )
1411, 12, 133bitr4i 211 . 2  |-  ( f  e.  X_ x  e.  A  ( B  i^i  C )  <-> 
f  e.  ( X_ x  e.  A  B  i^i  X_ x  e.  A  C ) )
1514eqriv 2137 1  |-  X_ x  e.  A  ( B  i^i  C )  =  (
X_ x  e.  A  B  i^i  X_ x  e.  A  C )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1332    e. wcel 1481   A.wral 2417    i^i cin 3075    Fn wfn 5126   ` cfv 5131   X_cixp 6600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fn 5134  df-fv 5139  df-ixp 6601
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator