| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difundi | Unicode version | ||
| Description: Distributive law for class difference. Theorem 39 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) |
| Ref | Expression |
|---|---|
| difundi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3166 |
. . . 4
| |
| 2 | eldif 3166 |
. . . 4
| |
| 3 | 1, 2 | anbi12i 460 |
. . 3
|
| 4 | elin 3346 |
. . 3
| |
| 5 | eldif 3166 |
. . . . . 6
| |
| 6 | elun 3304 |
. . . . . . . 8
| |
| 7 | 6 | notbii 669 |
. . . . . . 7
|
| 8 | 7 | anbi2i 457 |
. . . . . 6
|
| 9 | 5, 8 | bitri 184 |
. . . . 5
|
| 10 | ioran 753 |
. . . . . 6
| |
| 11 | 10 | anbi2i 457 |
. . . . 5
|
| 12 | 9, 11 | bitri 184 |
. . . 4
|
| 13 | anandi 590 |
. . . 4
| |
| 14 | 12, 13 | bitri 184 |
. . 3
|
| 15 | 3, 4, 14 | 3bitr4ri 213 |
. 2
|
| 16 | 15 | eqriv 2193 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 |
| This theorem is referenced by: undm 3421 undifdc 6985 uncld 14349 |
| Copyright terms: Public domain | W3C validator |