ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptun Unicode version

Theorem mptun 5454
Description: Union of mappings which are mutually compatible. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
mptun  |-  ( x  e.  ( A  u.  B )  |->  C )  =  ( ( x  e.  A  |->  C )  u.  ( x  e.  B  |->  C ) )

Proof of Theorem mptun
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-mpt 4146 . 2  |-  ( x  e.  ( A  u.  B )  |->  C )  =  { <. x ,  y >.  |  ( x  e.  ( A  u.  B )  /\  y  =  C ) }
2 df-mpt 4146 . . . 4  |-  ( x  e.  A  |->  C )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) }
3 df-mpt 4146 . . . 4  |-  ( x  e.  B  |->  C )  =  { <. x ,  y >.  |  ( x  e.  B  /\  y  =  C ) }
42, 3uneq12i 3356 . . 3  |-  ( ( x  e.  A  |->  C )  u.  ( x  e.  B  |->  C ) )  =  ( {
<. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) }  u.  {
<. x ,  y >.  |  ( x  e.  B  /\  y  =  C ) } )
5 elun 3345 . . . . . . 7  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
65anbi1i 458 . . . . . 6  |-  ( ( x  e.  ( A  u.  B )  /\  y  =  C )  <->  ( ( x  e.  A  \/  x  e.  B
)  /\  y  =  C ) )
7 andir 824 . . . . . 6  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  y  =  C )  <->  ( (
x  e.  A  /\  y  =  C )  \/  ( x  e.  B  /\  y  =  C
) ) )
86, 7bitri 184 . . . . 5  |-  ( ( x  e.  ( A  u.  B )  /\  y  =  C )  <->  ( ( x  e.  A  /\  y  =  C
)  \/  ( x  e.  B  /\  y  =  C ) ) )
98opabbii 4150 . . . 4  |-  { <. x ,  y >.  |  ( x  e.  ( A  u.  B )  /\  y  =  C ) }  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  =  C
)  \/  ( x  e.  B  /\  y  =  C ) ) }
10 unopab 4162 . . . 4  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) }  u.  {
<. x ,  y >.  |  ( x  e.  B  /\  y  =  C ) } )  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  =  C
)  \/  ( x  e.  B  /\  y  =  C ) ) }
119, 10eqtr4i 2253 . . 3  |-  { <. x ,  y >.  |  ( x  e.  ( A  u.  B )  /\  y  =  C ) }  =  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) }  u.  {
<. x ,  y >.  |  ( x  e.  B  /\  y  =  C ) } )
124, 11eqtr4i 2253 . 2  |-  ( ( x  e.  A  |->  C )  u.  ( x  e.  B  |->  C ) )  =  { <. x ,  y >.  |  ( x  e.  ( A  u.  B )  /\  y  =  C ) }
131, 12eqtr4i 2253 1  |-  ( x  e.  ( A  u.  B )  |->  C )  =  ( ( x  e.  A  |->  C )  u.  ( x  e.  B  |->  C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    \/ wo 713    = wceq 1395    e. wcel 2200    u. cun 3195   {copab 4143    |-> cmpt 4144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-opab 4145  df-mpt 4146
This theorem is referenced by:  fmptap  5828  fmptapd  5829
  Copyright terms: Public domain W3C validator