Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mptun | Unicode version |
Description: Union of mappings which are mutually compatible. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
mptun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpt 4052 | . 2 | |
2 | df-mpt 4052 | . . . 4 | |
3 | df-mpt 4052 | . . . 4 | |
4 | 2, 3 | uneq12i 3279 | . . 3 |
5 | elun 3268 | . . . . . . 7 | |
6 | 5 | anbi1i 455 | . . . . . 6 |
7 | andir 814 | . . . . . 6 | |
8 | 6, 7 | bitri 183 | . . . . 5 |
9 | 8 | opabbii 4056 | . . . 4 |
10 | unopab 4068 | . . . 4 | |
11 | 9, 10 | eqtr4i 2194 | . . 3 |
12 | 4, 11 | eqtr4i 2194 | . 2 |
13 | 1, 12 | eqtr4i 2194 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wo 703 wceq 1348 wcel 2141 cun 3119 copab 4049 cmpt 4050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-opab 4051 df-mpt 4052 |
This theorem is referenced by: fmptap 5686 fmptapd 5687 |
Copyright terms: Public domain | W3C validator |