ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptun Unicode version

Theorem mptun 5313
Description: Union of mappings which are mutually compatible. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
mptun  |-  ( x  e.  ( A  u.  B )  |->  C )  =  ( ( x  e.  A  |->  C )  u.  ( x  e.  B  |->  C ) )

Proof of Theorem mptun
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-mpt 4039 . 2  |-  ( x  e.  ( A  u.  B )  |->  C )  =  { <. x ,  y >.  |  ( x  e.  ( A  u.  B )  /\  y  =  C ) }
2 df-mpt 4039 . . . 4  |-  ( x  e.  A  |->  C )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) }
3 df-mpt 4039 . . . 4  |-  ( x  e.  B  |->  C )  =  { <. x ,  y >.  |  ( x  e.  B  /\  y  =  C ) }
42, 3uneq12i 3269 . . 3  |-  ( ( x  e.  A  |->  C )  u.  ( x  e.  B  |->  C ) )  =  ( {
<. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) }  u.  {
<. x ,  y >.  |  ( x  e.  B  /\  y  =  C ) } )
5 elun 3258 . . . . . . 7  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
65anbi1i 454 . . . . . 6  |-  ( ( x  e.  ( A  u.  B )  /\  y  =  C )  <->  ( ( x  e.  A  \/  x  e.  B
)  /\  y  =  C ) )
7 andir 809 . . . . . 6  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  y  =  C )  <->  ( (
x  e.  A  /\  y  =  C )  \/  ( x  e.  B  /\  y  =  C
) ) )
86, 7bitri 183 . . . . 5  |-  ( ( x  e.  ( A  u.  B )  /\  y  =  C )  <->  ( ( x  e.  A  /\  y  =  C
)  \/  ( x  e.  B  /\  y  =  C ) ) )
98opabbii 4043 . . . 4  |-  { <. x ,  y >.  |  ( x  e.  ( A  u.  B )  /\  y  =  C ) }  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  =  C
)  \/  ( x  e.  B  /\  y  =  C ) ) }
10 unopab 4055 . . . 4  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) }  u.  {
<. x ,  y >.  |  ( x  e.  B  /\  y  =  C ) } )  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  =  C
)  \/  ( x  e.  B  /\  y  =  C ) ) }
119, 10eqtr4i 2188 . . 3  |-  { <. x ,  y >.  |  ( x  e.  ( A  u.  B )  /\  y  =  C ) }  =  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  =  C ) }  u.  {
<. x ,  y >.  |  ( x  e.  B  /\  y  =  C ) } )
124, 11eqtr4i 2188 . 2  |-  ( ( x  e.  A  |->  C )  u.  ( x  e.  B  |->  C ) )  =  { <. x ,  y >.  |  ( x  e.  ( A  u.  B )  /\  y  =  C ) }
131, 12eqtr4i 2188 1  |-  ( x  e.  ( A  u.  B )  |->  C )  =  ( ( x  e.  A  |->  C )  u.  ( x  e.  B  |->  C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    \/ wo 698    = wceq 1342    e. wcel 2135    u. cun 3109   {copab 4036    |-> cmpt 4037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-ext 2146
This theorem depends on definitions:  df-bi 116  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-v 2723  df-un 3115  df-opab 4038  df-mpt 4039
This theorem is referenced by:  fmptap  5669  fmptapd  5670
  Copyright terms: Public domain W3C validator