| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdzfauscl | Unicode version | ||
| Description: Closed form of the version of zfauscl 4180 for bounded formulas using bounded separation. (Contributed by BJ, 13-Nov-2019.) |
| Ref | Expression |
|---|---|
| bdzfauscl.bd |
|
| Ref | Expression |
|---|---|
| bdzfauscl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2271 |
. . . . . 6
| |
| 2 | 1 | anbi1d 465 |
. . . . 5
|
| 3 | 2 | bibi2d 232 |
. . . 4
|
| 4 | 3 | albidv 1848 |
. . 3
|
| 5 | 4 | exbidv 1849 |
. 2
|
| 6 | bdzfauscl.bd |
. . 3
| |
| 7 | 6 | bdsep1 16020 |
. 2
|
| 8 | 5, 7 | vtoclg 2838 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-bdsep 16019 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 |
| This theorem is referenced by: bdinex1 16034 |
| Copyright terms: Public domain | W3C validator |