Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdzfauscl | Unicode version |
Description: Closed form of the version of zfauscl 4080 for bounded formulas using bounded separation. (Contributed by BJ, 13-Nov-2019.) |
Ref | Expression |
---|---|
bdzfauscl.bd | BOUNDED |
Ref | Expression |
---|---|
bdzfauscl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2218 | . . . . . 6 | |
2 | 1 | anbi1d 461 | . . . . 5 |
3 | 2 | bibi2d 231 | . . . 4 |
4 | 3 | albidv 1801 | . . 3 |
5 | 4 | exbidv 1802 | . 2 |
6 | bdzfauscl.bd | . . 3 BOUNDED | |
7 | 6 | bdsep1 13398 | . 2 |
8 | 5, 7 | vtoclg 2769 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1330 wceq 1332 wex 1469 wcel 2125 BOUNDED wbd 13325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 ax-bdsep 13397 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 |
This theorem is referenced by: bdinex1 13412 |
Copyright terms: Public domain | W3C validator |