Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdzfauscl Unicode version

Theorem bdzfauscl 13925
Description: Closed form of the version of zfauscl 4109 for bounded formulas using bounded separation. (Contributed by BJ, 13-Nov-2019.)
Hypothesis
Ref Expression
bdzfauscl.bd  |- BOUNDED  ph
Assertion
Ref Expression
bdzfauscl  |-  ( A  e.  V  ->  E. y A. x ( x  e.  y  <->  ( x  e.  A  /\  ph )
) )
Distinct variable groups:    x, y, A    ph, y
Allowed substitution hints:    ph( x)    V( x, y)

Proof of Theorem bdzfauscl
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eleq2 2234 . . . . . 6  |-  ( z  =  A  ->  (
x  e.  z  <->  x  e.  A ) )
21anbi1d 462 . . . . 5  |-  ( z  =  A  ->  (
( x  e.  z  /\  ph )  <->  ( x  e.  A  /\  ph )
) )
32bibi2d 231 . . . 4  |-  ( z  =  A  ->  (
( x  e.  y  <-> 
( x  e.  z  /\  ph ) )  <-> 
( x  e.  y  <-> 
( x  e.  A  /\  ph ) ) ) )
43albidv 1817 . . 3  |-  ( z  =  A  ->  ( A. x ( x  e.  y  <->  ( x  e.  z  /\  ph )
)  <->  A. x ( x  e.  y  <->  ( x  e.  A  /\  ph )
) ) )
54exbidv 1818 . 2  |-  ( z  =  A  ->  ( E. y A. x ( x  e.  y  <->  ( x  e.  z  /\  ph )
)  <->  E. y A. x
( x  e.  y  <-> 
( x  e.  A  /\  ph ) ) ) )
6 bdzfauscl.bd . . 3  |- BOUNDED  ph
76bdsep1 13920 . 2  |-  E. y A. x ( x  e.  y  <->  ( x  e.  z  /\  ph )
)
85, 7vtoclg 2790 1  |-  ( A  e.  V  ->  E. y A. x ( x  e.  y  <->  ( x  e.  A  /\  ph )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1346    = wceq 1348   E.wex 1485    e. wcel 2141  BOUNDED wbd 13847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-bdsep 13919
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732
This theorem is referenced by:  bdinex1  13934
  Copyright terms: Public domain W3C validator