Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdssexg GIF version

Theorem bdssexg 16039
Description: Bounded version of ssexg 4199. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bdssexg.bd BOUNDED 𝐴
Assertion
Ref Expression
bdssexg ((𝐴𝐵𝐵𝐶) → 𝐴 ∈ V)

Proof of Theorem bdssexg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sseq2 3225 . . . 4 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
21imbi1d 231 . . 3 (𝑥 = 𝐵 → ((𝐴𝑥𝐴 ∈ V) ↔ (𝐴𝐵𝐴 ∈ V)))
3 bdssexg.bd . . . 4 BOUNDED 𝐴
4 vex 2779 . . . 4 𝑥 ∈ V
53, 4bdssex 16037 . . 3 (𝐴𝑥𝐴 ∈ V)
62, 5vtoclg 2838 . 2 (𝐵𝐶 → (𝐴𝐵𝐴 ∈ V))
76impcom 125 1 ((𝐴𝐵𝐵𝐶) → 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2178  Vcvv 2776  wss 3174  BOUNDED wbdc 15975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-bdsep 16019
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-in 3180  df-ss 3187  df-bdc 15976
This theorem is referenced by:  bdssexd  16040  bdrabexg  16041  bdunexb  16055
  Copyright terms: Public domain W3C validator