| Mathbox for BJ | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdssexg | GIF version | ||
| Description: Bounded version of ssexg 4172. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) | 
| Ref | Expression | 
|---|---|
| bdssexg.bd | ⊢ BOUNDED 𝐴 | 
| Ref | Expression | 
|---|---|
| bdssexg | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sseq2 3207 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝐵)) | |
| 2 | 1 | imbi1d 231 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ⊆ 𝑥 → 𝐴 ∈ V) ↔ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V))) | 
| 3 | bdssexg.bd | . . . 4 ⊢ BOUNDED 𝐴 | |
| 4 | vex 2766 | . . . 4 ⊢ 𝑥 ∈ V | |
| 5 | 3, 4 | bdssex 15548 | . . 3 ⊢ (𝐴 ⊆ 𝑥 → 𝐴 ∈ V) | 
| 6 | 2, 5 | vtoclg 2824 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ V)) | 
| 7 | 6 | impcom 125 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ⊆ wss 3157 BOUNDED wbdc 15486 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-bdsep 15530 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-bdc 15487 | 
| This theorem is referenced by: bdssexd 15551 bdrabexg 15552 bdunexb 15566 | 
| Copyright terms: Public domain | W3C validator |