Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdssexg GIF version

Theorem bdssexg 14741
Description: Bounded version of ssexg 4144. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bdssexg.bd BOUNDED 𝐴
Assertion
Ref Expression
bdssexg ((𝐴𝐵𝐵𝐶) → 𝐴 ∈ V)

Proof of Theorem bdssexg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sseq2 3181 . . . 4 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
21imbi1d 231 . . 3 (𝑥 = 𝐵 → ((𝐴𝑥𝐴 ∈ V) ↔ (𝐴𝐵𝐴 ∈ V)))
3 bdssexg.bd . . . 4 BOUNDED 𝐴
4 vex 2742 . . . 4 𝑥 ∈ V
53, 4bdssex 14739 . . 3 (𝐴𝑥𝐴 ∈ V)
62, 5vtoclg 2799 . 2 (𝐵𝐶 → (𝐴𝐵𝐴 ∈ V))
76impcom 125 1 ((𝐴𝐵𝐵𝐶) → 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  Vcvv 2739  wss 3131  BOUNDED wbdc 14677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-bdsep 14721
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-in 3137  df-ss 3144  df-bdc 14678
This theorem is referenced by:  bdssexd  14742  bdrabexg  14743  bdunexb  14757
  Copyright terms: Public domain W3C validator