Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdunexb Unicode version

Theorem bdunexb 15566
Description: Bounded version of unexb 4477. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdunex.bd1  |- BOUNDED  A
bdunex.bd2  |- BOUNDED  B
Assertion
Ref Expression
bdunexb  |-  ( ( A  e.  _V  /\  B  e.  _V )  <->  ( A  u.  B )  e.  _V )

Proof of Theorem bdunexb
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq1 3310 . . . 4  |-  ( x  =  A  ->  (
x  u.  y )  =  ( A  u.  y ) )
21eleq1d 2265 . . 3  |-  ( x  =  A  ->  (
( x  u.  y
)  e.  _V  <->  ( A  u.  y )  e.  _V ) )
3 uneq2 3311 . . . 4  |-  ( y  =  B  ->  ( A  u.  y )  =  ( A  u.  B ) )
43eleq1d 2265 . . 3  |-  ( y  =  B  ->  (
( A  u.  y
)  e.  _V  <->  ( A  u.  B )  e.  _V ) )
5 vex 2766 . . . 4  |-  x  e. 
_V
6 vex 2766 . . . 4  |-  y  e. 
_V
75, 6bj-unex 15565 . . 3  |-  ( x  u.  y )  e. 
_V
82, 4, 7vtocl2g 2828 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A  u.  B
)  e.  _V )
9 ssun1 3326 . . . 4  |-  A  C_  ( A  u.  B
)
10 bdunex.bd1 . . . . 5  |- BOUNDED  A
1110bdssexg 15550 . . . 4  |-  ( ( A  C_  ( A  u.  B )  /\  ( A  u.  B )  e.  _V )  ->  A  e.  _V )
129, 11mpan 424 . . 3  |-  ( ( A  u.  B )  e.  _V  ->  A  e.  _V )
13 ssun2 3327 . . . 4  |-  B  C_  ( A  u.  B
)
14 bdunex.bd2 . . . . 5  |- BOUNDED  B
1514bdssexg 15550 . . . 4  |-  ( ( B  C_  ( A  u.  B )  /\  ( A  u.  B )  e.  _V )  ->  B  e.  _V )
1613, 15mpan 424 . . 3  |-  ( ( A  u.  B )  e.  _V  ->  B  e.  _V )
1712, 16jca 306 . 2  |-  ( ( A  u.  B )  e.  _V  ->  ( A  e.  _V  /\  B  e.  _V ) )
188, 17impbii 126 1  |-  ( ( A  e.  _V  /\  B  e.  _V )  <->  ( A  u.  B )  e.  _V )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   _Vcvv 2763    u. cun 3155    C_ wss 3157  BOUNDED wbdc 15486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-pr 4242  ax-un 4468  ax-bd0 15459  ax-bdor 15462  ax-bdex 15465  ax-bdeq 15466  ax-bdel 15467  ax-bdsb 15468  ax-bdsep 15530
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-uni 3840  df-bdc 15487
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator