Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdunexb Unicode version

Theorem bdunexb 12801
Description: Bounded version of unexb 4321. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdunex.bd1  |- BOUNDED  A
bdunex.bd2  |- BOUNDED  B
Assertion
Ref Expression
bdunexb  |-  ( ( A  e.  _V  /\  B  e.  _V )  <->  ( A  u.  B )  e.  _V )

Proof of Theorem bdunexb
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq1 3187 . . . 4  |-  ( x  =  A  ->  (
x  u.  y )  =  ( A  u.  y ) )
21eleq1d 2181 . . 3  |-  ( x  =  A  ->  (
( x  u.  y
)  e.  _V  <->  ( A  u.  y )  e.  _V ) )
3 uneq2 3188 . . . 4  |-  ( y  =  B  ->  ( A  u.  y )  =  ( A  u.  B ) )
43eleq1d 2181 . . 3  |-  ( y  =  B  ->  (
( A  u.  y
)  e.  _V  <->  ( A  u.  B )  e.  _V ) )
5 vex 2658 . . . 4  |-  x  e. 
_V
6 vex 2658 . . . 4  |-  y  e. 
_V
75, 6bj-unex 12800 . . 3  |-  ( x  u.  y )  e. 
_V
82, 4, 7vtocl2g 2719 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A  u.  B
)  e.  _V )
9 ssun1 3203 . . . 4  |-  A  C_  ( A  u.  B
)
10 bdunex.bd1 . . . . 5  |- BOUNDED  A
1110bdssexg 12785 . . . 4  |-  ( ( A  C_  ( A  u.  B )  /\  ( A  u.  B )  e.  _V )  ->  A  e.  _V )
129, 11mpan 418 . . 3  |-  ( ( A  u.  B )  e.  _V  ->  A  e.  _V )
13 ssun2 3204 . . . 4  |-  B  C_  ( A  u.  B
)
14 bdunex.bd2 . . . . 5  |- BOUNDED  B
1514bdssexg 12785 . . . 4  |-  ( ( B  C_  ( A  u.  B )  /\  ( A  u.  B )  e.  _V )  ->  B  e.  _V )
1613, 15mpan 418 . . 3  |-  ( ( A  u.  B )  e.  _V  ->  B  e.  _V )
1712, 16jca 302 . 2  |-  ( ( A  u.  B )  e.  _V  ->  ( A  e.  _V  /\  B  e.  _V ) )
188, 17impbii 125 1  |-  ( ( A  e.  _V  /\  B  e.  _V )  <->  ( A  u.  B )  e.  _V )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1312    e. wcel 1461   _Vcvv 2655    u. cun 3033    C_ wss 3035  BOUNDED wbdc 12721
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-pr 4089  ax-un 4313  ax-bd0 12694  ax-bdor 12697  ax-bdex 12700  ax-bdeq 12701  ax-bdel 12702  ax-bdsb 12703  ax-bdsep 12765
This theorem depends on definitions:  df-bi 116  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-rex 2394  df-v 2657  df-un 3039  df-in 3041  df-ss 3048  df-sn 3497  df-pr 3498  df-uni 3701  df-bdc 12722
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator