ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isstructim Unicode version

Theorem isstructim 12479
Description: The property of being a structure with components in  M ... N. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.)
Assertion
Ref Expression
isstructim  |-  ( F Struct  <. M ,  N >.  -> 
( ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( M ... N
) ) )

Proof of Theorem isstructim
StepHypRef Expression
1 isstruct2im 12475 . 2  |-  ( F Struct  <. M ,  N >.  -> 
( <. M ,  N >.  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( ... `  <. M ,  N >. )
) )
2 brinxp2 4695 . . . 4  |-  ( M (  <_  i^i  ( NN  X.  NN ) ) N  <->  ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N ) )
3 df-br 4006 . . . 4  |-  ( M (  <_  i^i  ( NN  X.  NN ) ) N  <->  <. M ,  N >.  e.  (  <_  i^i  ( NN  X.  NN ) ) )
42, 3bitr3i 186 . . 3  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N )  <->  <. M ,  N >.  e.  (  <_  i^i  ( NN  X.  NN ) ) )
5 biid 171 . . 3  |-  ( Fun  ( F  \  { (/)
} )  <->  Fun  ( F 
\  { (/) } ) )
6 df-ov 5881 . . . 4  |-  ( M ... N )  =  ( ... `  <. M ,  N >. )
76sseq2i 3184 . . 3  |-  ( dom 
F  C_  ( M ... N )  <->  dom  F  C_  ( ... `  <. M ,  N >. ) )
84, 5, 73anbi123i 1188 . 2  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N )  /\  Fun  ( F  \  { (/)
} )  /\  dom  F 
C_  ( M ... N ) )  <->  ( <. M ,  N >.  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} )  /\  dom  F 
C_  ( ... `  <. M ,  N >. )
) )
91, 8sylibr 134 1  |-  ( F Struct  <. M ,  N >.  -> 
( ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( M ... N
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 978    e. wcel 2148    \ cdif 3128    i^i cin 3130    C_ wss 3131   (/)c0 3424   {csn 3594   <.cop 3597   class class class wbr 4005    X. cxp 4626   dom cdm 4628   Fun wfun 5212   ` cfv 5218  (class class class)co 5878    <_ cle 7996   NNcn 8922   ...cfz 10011   Struct cstr 12461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-ov 5881  df-struct 12467
This theorem is referenced by:  structfn  12484  strsetsid  12498  strleund  12565  strleun  12566  strext  12567
  Copyright terms: Public domain W3C validator