ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isstructim Unicode version

Theorem isstructim 12408
Description: The property of being a structure with components in  M ... N. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.)
Assertion
Ref Expression
isstructim  |-  ( F Struct  <. M ,  N >.  -> 
( ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( M ... N
) ) )

Proof of Theorem isstructim
StepHypRef Expression
1 isstruct2im 12404 . 2  |-  ( F Struct  <. M ,  N >.  -> 
( <. M ,  N >.  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( ... `  <. M ,  N >. )
) )
2 brinxp2 4671 . . . 4  |-  ( M (  <_  i^i  ( NN  X.  NN ) ) N  <->  ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N ) )
3 df-br 3983 . . . 4  |-  ( M (  <_  i^i  ( NN  X.  NN ) ) N  <->  <. M ,  N >.  e.  (  <_  i^i  ( NN  X.  NN ) ) )
42, 3bitr3i 185 . . 3  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N )  <->  <. M ,  N >.  e.  (  <_  i^i  ( NN  X.  NN ) ) )
5 biid 170 . . 3  |-  ( Fun  ( F  \  { (/)
} )  <->  Fun  ( F 
\  { (/) } ) )
6 df-ov 5845 . . . 4  |-  ( M ... N )  =  ( ... `  <. M ,  N >. )
76sseq2i 3169 . . 3  |-  ( dom 
F  C_  ( M ... N )  <->  dom  F  C_  ( ... `  <. M ,  N >. ) )
84, 5, 73anbi123i 1178 . 2  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N )  /\  Fun  ( F  \  { (/)
} )  /\  dom  F 
C_  ( M ... N ) )  <->  ( <. M ,  N >.  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} )  /\  dom  F 
C_  ( ... `  <. M ,  N >. )
) )
91, 8sylibr 133 1  |-  ( F Struct  <. M ,  N >.  -> 
( ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N )  /\  Fun  ( F  \  { (/) } )  /\  dom  F  C_  ( M ... N
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 968    e. wcel 2136    \ cdif 3113    i^i cin 3115    C_ wss 3116   (/)c0 3409   {csn 3576   <.cop 3579   class class class wbr 3982    X. cxp 4602   dom cdm 4604   Fun wfun 5182   ` cfv 5188  (class class class)co 5842    <_ cle 7934   NNcn 8857   ...cfz 9944   Struct cstr 12390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-ov 5845  df-struct 12396
This theorem is referenced by:  structfn  12413  strsetsid  12427  strleund  12483  strleun  12484
  Copyright terms: Public domain W3C validator