ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodvscl Unicode version

Theorem lmodvscl 13801
Description: Closure of scalar product for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodvscl.v  |-  V  =  ( Base `  W
)
lmodvscl.f  |-  F  =  (Scalar `  W )
lmodvscl.s  |-  .x.  =  ( .s `  W )
lmodvscl.k  |-  K  =  ( Base `  F
)
Assertion
Ref Expression
lmodvscl  |-  ( ( W  e.  LMod  /\  R  e.  K  /\  X  e.  V )  ->  ( R  .x.  X )  e.  V )

Proof of Theorem lmodvscl
StepHypRef Expression
1 biid 171 . 2  |-  ( W  e.  LMod  <->  W  e.  LMod )
2 pm4.24 395 . 2  |-  ( R  e.  K  <->  ( R  e.  K  /\  R  e.  K ) )
3 pm4.24 395 . 2  |-  ( X  e.  V  <->  ( X  e.  V  /\  X  e.  V ) )
4 lmodvscl.v . . . . 5  |-  V  =  ( Base `  W
)
5 eqid 2193 . . . . 5  |-  ( +g  `  W )  =  ( +g  `  W )
6 lmodvscl.s . . . . 5  |-  .x.  =  ( .s `  W )
7 lmodvscl.f . . . . 5  |-  F  =  (Scalar `  W )
8 lmodvscl.k . . . . 5  |-  K  =  ( Base `  F
)
9 eqid 2193 . . . . 5  |-  ( +g  `  F )  =  ( +g  `  F )
10 eqid 2193 . . . . 5  |-  ( .r
`  F )  =  ( .r `  F
)
11 eqid 2193 . . . . 5  |-  ( 1r
`  F )  =  ( 1r `  F
)
124, 5, 6, 7, 8, 9, 10, 11lmodlema 13788 . . . 4  |-  ( ( W  e.  LMod  /\  ( R  e.  K  /\  R  e.  K )  /\  ( X  e.  V  /\  X  e.  V
) )  ->  (
( ( R  .x.  X )  e.  V  /\  ( R  .x.  ( X ( +g  `  W
) X ) )  =  ( ( R 
.x.  X ) ( +g  `  W ) ( R  .x.  X
) )  /\  (
( R ( +g  `  F ) R ) 
.x.  X )  =  ( ( R  .x.  X ) ( +g  `  W ) ( R 
.x.  X ) ) )  /\  ( ( ( R ( .r
`  F ) R )  .x.  X )  =  ( R  .x.  ( R  .x.  X ) )  /\  ( ( 1r `  F ) 
.x.  X )  =  X ) ) )
1312simpld 112 . . 3  |-  ( ( W  e.  LMod  /\  ( R  e.  K  /\  R  e.  K )  /\  ( X  e.  V  /\  X  e.  V
) )  ->  (
( R  .x.  X
)  e.  V  /\  ( R  .x.  ( X ( +g  `  W
) X ) )  =  ( ( R 
.x.  X ) ( +g  `  W ) ( R  .x.  X
) )  /\  (
( R ( +g  `  F ) R ) 
.x.  X )  =  ( ( R  .x.  X ) ( +g  `  W ) ( R 
.x.  X ) ) ) )
1413simp1d 1011 . 2  |-  ( ( W  e.  LMod  /\  ( R  e.  K  /\  R  e.  K )  /\  ( X  e.  V  /\  X  e.  V
) )  ->  ( R  .x.  X )  e.  V )
151, 2, 3, 14syl3anb 1292 1  |-  ( ( W  e.  LMod  /\  R  e.  K  /\  X  e.  V )  ->  ( R  .x.  X )  e.  V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   .rcmulr 12696  Scalarcsca 12698   .scvsca 12699   1rcur 13455   LModclmod 13783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-ov 5921  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-mulr 12709  df-sca 12711  df-vsca 12712  df-lmod 13785
This theorem is referenced by:  lmodscaf  13806  lmod0vs  13817  lmodvsmmulgdi  13819  lcomf  13823  lmodvneg1  13826  lmodvsneg  13827  lmodnegadd  13832  lmodsubvs  13839  lmodsubdi  13840  lmodsubdir  13841  lmodprop2d  13844  lss1  13858  lssvsubcl  13862  lssvscl  13871  lss1d  13879
  Copyright terms: Public domain W3C validator