| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodvscl | Unicode version | ||
| Description: Closure of scalar product for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodvscl.v |
|
| lmodvscl.f |
|
| lmodvscl.s |
|
| lmodvscl.k |
|
| Ref | Expression |
|---|---|
| lmodvscl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 171 |
. 2
| |
| 2 | pm4.24 395 |
. 2
| |
| 3 | pm4.24 395 |
. 2
| |
| 4 | lmodvscl.v |
. . . . 5
| |
| 5 | eqid 2206 |
. . . . 5
| |
| 6 | lmodvscl.s |
. . . . 5
| |
| 7 | lmodvscl.f |
. . . . 5
| |
| 8 | lmodvscl.k |
. . . . 5
| |
| 9 | eqid 2206 |
. . . . 5
| |
| 10 | eqid 2206 |
. . . . 5
| |
| 11 | eqid 2206 |
. . . . 5
| |
| 12 | 4, 5, 6, 7, 8, 9, 10, 11 | lmodlema 14139 |
. . . 4
|
| 13 | 12 | simpld 112 |
. . 3
|
| 14 | 13 | simp1d 1012 |
. 2
|
| 15 | 1, 2, 3, 14 | syl3anb 1293 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-cnex 8046 ax-resscn 8047 ax-1re 8049 ax-addrcl 8052 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-iota 5246 df-fun 5287 df-fn 5288 df-fv 5293 df-ov 5965 df-inn 9067 df-2 9125 df-3 9126 df-4 9127 df-5 9128 df-6 9129 df-ndx 12920 df-slot 12921 df-base 12923 df-plusg 13007 df-mulr 13008 df-sca 13010 df-vsca 13011 df-lmod 14136 |
| This theorem is referenced by: lmodscaf 14157 lmod0vs 14168 lmodvsmmulgdi 14170 lcomf 14174 lmodvneg1 14177 lmodvsneg 14178 lmodnegadd 14183 lmodsubvs 14190 lmodsubdi 14191 lmodsubdir 14192 lmodprop2d 14195 lss1 14209 lssvsubcl 14213 lssvscl 14222 lss1d 14230 |
| Copyright terms: Public domain | W3C validator |