| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodvscl | Unicode version | ||
| Description: Closure of scalar product for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodvscl.v |
|
| lmodvscl.f |
|
| lmodvscl.s |
|
| lmodvscl.k |
|
| Ref | Expression |
|---|---|
| lmodvscl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 171 |
. 2
| |
| 2 | pm4.24 395 |
. 2
| |
| 3 | pm4.24 395 |
. 2
| |
| 4 | lmodvscl.v |
. . . . 5
| |
| 5 | eqid 2196 |
. . . . 5
| |
| 6 | lmodvscl.s |
. . . . 5
| |
| 7 | lmodvscl.f |
. . . . 5
| |
| 8 | lmodvscl.k |
. . . . 5
| |
| 9 | eqid 2196 |
. . . . 5
| |
| 10 | eqid 2196 |
. . . . 5
| |
| 11 | eqid 2196 |
. . . . 5
| |
| 12 | 4, 5, 6, 7, 8, 9, 10, 11 | lmodlema 13848 |
. . . 4
|
| 13 | 12 | simpld 112 |
. . 3
|
| 14 | 13 | simp1d 1011 |
. 2
|
| 15 | 1, 2, 3, 14 | syl3anb 1292 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-ov 5925 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-mulr 12769 df-sca 12771 df-vsca 12772 df-lmod 13845 |
| This theorem is referenced by: lmodscaf 13866 lmod0vs 13877 lmodvsmmulgdi 13879 lcomf 13883 lmodvneg1 13886 lmodvsneg 13887 lmodnegadd 13892 lmodsubvs 13899 lmodsubdi 13900 lmodsubdir 13901 lmodprop2d 13904 lss1 13918 lssvsubcl 13922 lssvscl 13931 lss1d 13939 |
| Copyright terms: Public domain | W3C validator |