| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodvscl | Unicode version | ||
| Description: Closure of scalar product for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodvscl.v |
|
| lmodvscl.f |
|
| lmodvscl.s |
|
| lmodvscl.k |
|
| Ref | Expression |
|---|---|
| lmodvscl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 171 |
. 2
| |
| 2 | pm4.24 395 |
. 2
| |
| 3 | pm4.24 395 |
. 2
| |
| 4 | lmodvscl.v |
. . . . 5
| |
| 5 | eqid 2204 |
. . . . 5
| |
| 6 | lmodvscl.s |
. . . . 5
| |
| 7 | lmodvscl.f |
. . . . 5
| |
| 8 | lmodvscl.k |
. . . . 5
| |
| 9 | eqid 2204 |
. . . . 5
| |
| 10 | eqid 2204 |
. . . . 5
| |
| 11 | eqid 2204 |
. . . . 5
| |
| 12 | 4, 5, 6, 7, 8, 9, 10, 11 | lmodlema 13996 |
. . . 4
|
| 13 | 12 | simpld 112 |
. . 3
|
| 14 | 13 | simp1d 1011 |
. 2
|
| 15 | 1, 2, 3, 14 | syl3anb 1292 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 df-ov 5946 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-ndx 12777 df-slot 12778 df-base 12780 df-plusg 12864 df-mulr 12865 df-sca 12867 df-vsca 12868 df-lmod 13993 |
| This theorem is referenced by: lmodscaf 14014 lmod0vs 14025 lmodvsmmulgdi 14027 lcomf 14031 lmodvneg1 14034 lmodvsneg 14035 lmodnegadd 14040 lmodsubvs 14047 lmodsubdi 14048 lmodsubdir 14049 lmodprop2d 14052 lss1 14066 lssvsubcl 14070 lssvscl 14079 lss1d 14087 |
| Copyright terms: Public domain | W3C validator |