Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylbird | Unicode version |
Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
sylbird.1 | |
sylbird.2 |
Ref | Expression |
---|---|
sylbird |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbird.1 | . . 3 | |
2 | 1 | biimprd 157 | . 2 |
3 | sylbird.2 | . 2 | |
4 | 2, 3 | syld 45 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3imtr3d 201 drex1 1791 eqreu 2922 onsucsssucr 4493 ordsucunielexmid 4515 ovi3 5989 tfrlem9 6298 dom2lem 6750 distrlem4prl 7546 distrlem4pru 7547 recexprlemm 7586 caucvgprlem1 7641 caucvgprprlemexb 7669 aptisr 7741 map2psrprg 7767 renegcl 8180 addid0 8292 remulext2 8519 mulext1 8531 apmul1 8705 nnge1 8901 0mnnnnn0 9167 nn0lt2 9293 zneo 9313 uzind2 9324 fzind 9327 nn0ind-raph 9329 ledivge1le 9683 elfzmlbp 10088 difelfznle 10091 elfzodifsumelfzo 10157 ssfzo12 10180 flqeqceilz 10274 addmodlteq 10354 uzsinds 10398 qsqeqor 10586 facdiv 10672 facwordi 10674 bcpasc 10700 addcn2 11273 mulcn2 11275 climrecvg1n 11311 odd2np1 11832 oddge22np1 11840 gcdaddm 11939 algcvgblem 12003 cncongr1 12057 pcdvdsb 12273 pcaddlem 12292 infpnlem1 12311 prmunb 12314 metss2lem 13291 2sqlem6 13750 |
Copyright terms: Public domain | W3C validator |