| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylbird | Unicode version | ||
| Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| sylbird.1 |
|
| sylbird.2 |
|
| Ref | Expression |
|---|---|
| sylbird |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbird.1 |
. . 3
| |
| 2 | 1 | biimprd 158 |
. 2
|
| 3 | sylbird.2 |
. 2
| |
| 4 | 2, 3 | syld 45 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr3d 202 drex1 1812 eqreu 2956 onsucsssucr 4545 ordsucunielexmid 4567 ovi3 6060 tfrlem9 6377 dom2lem 6831 distrlem4prl 7651 distrlem4pru 7652 recexprlemm 7691 caucvgprlem1 7746 caucvgprprlemexb 7774 aptisr 7846 map2psrprg 7872 renegcl 8287 addid0 8399 remulext2 8627 mulext1 8639 apmul1 8815 nnge1 9013 0mnnnnn0 9281 nn0lt2 9407 zneo 9427 uzind2 9438 fzind 9441 nn0ind-raph 9443 ledivge1le 9801 elfzmlbp 10207 difelfznle 10210 elfzodifsumelfzo 10277 ssfzo12 10300 flqeqceilz 10410 addmodlteq 10490 uzsinds 10536 qsqeqor 10742 facdiv 10830 facwordi 10832 bcpasc 10858 addcn2 11475 mulcn2 11477 climrecvg1n 11513 odd2np1 12038 oddge22np1 12046 bitsfzo 12119 gcdaddm 12151 algcvgblem 12217 cncongr1 12271 pcdvdsb 12489 pcaddlem 12508 infpnlem1 12528 prmunb 12531 imasaddfnlemg 12957 f1ghm0to0 13402 ghmf1 13403 imasring 13620 subrgdvds 13791 aprcotr 13841 quscrng 14089 metss2lem 14733 gausslemma2dlem0i 15298 gausslemma2dlem1a 15299 lgseisenlem2 15312 2sqlem6 15361 |
| Copyright terms: Public domain | W3C validator |