Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylbird | Unicode version |
Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
sylbird.1 | |
sylbird.2 |
Ref | Expression |
---|---|
sylbird |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbird.1 | . . 3 | |
2 | 1 | biimprd 157 | . 2 |
3 | sylbird.2 | . 2 | |
4 | 2, 3 | syld 45 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3imtr3d 201 drex1 1786 eqreu 2918 onsucsssucr 4486 ordsucunielexmid 4508 ovi3 5978 tfrlem9 6287 dom2lem 6738 distrlem4prl 7525 distrlem4pru 7526 recexprlemm 7565 caucvgprlem1 7620 caucvgprprlemexb 7648 aptisr 7720 map2psrprg 7746 renegcl 8159 addid0 8271 remulext2 8498 mulext1 8510 apmul1 8684 nnge1 8880 0mnnnnn0 9146 nn0lt2 9272 zneo 9292 uzind2 9303 fzind 9306 nn0ind-raph 9308 ledivge1le 9662 elfzmlbp 10067 difelfznle 10070 elfzodifsumelfzo 10136 ssfzo12 10159 flqeqceilz 10253 addmodlteq 10333 uzsinds 10377 qsqeqor 10565 facdiv 10651 facwordi 10653 bcpasc 10679 addcn2 11251 mulcn2 11253 climrecvg1n 11289 odd2np1 11810 oddge22np1 11818 gcdaddm 11917 algcvgblem 11981 cncongr1 12035 pcdvdsb 12251 pcaddlem 12270 infpnlem1 12289 prmunb 12292 metss2lem 13137 2sqlem6 13596 |
Copyright terms: Public domain | W3C validator |