| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylbird | Unicode version | ||
| Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| sylbird.1 |
|
| sylbird.2 |
|
| Ref | Expression |
|---|---|
| sylbird |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbird.1 |
. . 3
| |
| 2 | 1 | biimprd 158 |
. 2
|
| 3 | sylbird.2 |
. 2
| |
| 4 | 2, 3 | syld 45 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr3d 202 drex1 1820 eqreu 2964 onsucsssucr 4555 ordsucunielexmid 4577 ovi3 6073 tfrlem9 6395 dom2lem 6849 distrlem4prl 7679 distrlem4pru 7680 recexprlemm 7719 caucvgprlem1 7774 caucvgprprlemexb 7802 aptisr 7874 map2psrprg 7900 renegcl 8315 addid0 8427 remulext2 8655 mulext1 8667 apmul1 8843 nnge1 9041 0mnnnnn0 9309 nn0lt2 9436 zneo 9456 uzind2 9467 fzind 9470 nn0ind-raph 9472 ledivge1le 9830 elfzmlbp 10236 difelfznle 10239 elfzodifsumelfzo 10311 ssfzo12 10334 flqeqceilz 10444 addmodlteq 10524 uzsinds 10570 qsqeqor 10776 facdiv 10864 facwordi 10866 bcpasc 10892 ccatsymb 11033 addcn2 11540 mulcn2 11542 climrecvg1n 11578 odd2np1 12103 oddge22np1 12111 bitsfzo 12185 gcdaddm 12224 algcvgblem 12290 cncongr1 12344 pcdvdsb 12562 pcaddlem 12581 infpnlem1 12601 prmunb 12604 imasaddfnlemg 13064 f1ghm0to0 13526 ghmf1 13527 imasring 13744 subrgdvds 13915 aprcotr 13965 quscrng 14213 metss2lem 14887 gausslemma2dlem0i 15452 gausslemma2dlem1a 15453 lgseisenlem2 15466 2sqlem6 15515 |
| Copyright terms: Public domain | W3C validator |