| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylbird | Unicode version | ||
| Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| sylbird.1 |
|
| sylbird.2 |
|
| Ref | Expression |
|---|---|
| sylbird |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbird.1 |
. . 3
| |
| 2 | 1 | biimprd 158 |
. 2
|
| 3 | sylbird.2 |
. 2
| |
| 4 | 2, 3 | syld 45 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr3d 202 drex1 1812 eqreu 2956 onsucsssucr 4546 ordsucunielexmid 4568 ovi3 6064 tfrlem9 6386 dom2lem 6840 distrlem4prl 7668 distrlem4pru 7669 recexprlemm 7708 caucvgprlem1 7763 caucvgprprlemexb 7791 aptisr 7863 map2psrprg 7889 renegcl 8304 addid0 8416 remulext2 8644 mulext1 8656 apmul1 8832 nnge1 9030 0mnnnnn0 9298 nn0lt2 9424 zneo 9444 uzind2 9455 fzind 9458 nn0ind-raph 9460 ledivge1le 9818 elfzmlbp 10224 difelfznle 10227 elfzodifsumelfzo 10294 ssfzo12 10317 flqeqceilz 10427 addmodlteq 10507 uzsinds 10553 qsqeqor 10759 facdiv 10847 facwordi 10849 bcpasc 10875 addcn2 11492 mulcn2 11494 climrecvg1n 11530 odd2np1 12055 oddge22np1 12063 bitsfzo 12137 gcdaddm 12176 algcvgblem 12242 cncongr1 12296 pcdvdsb 12514 pcaddlem 12533 infpnlem1 12553 prmunb 12556 imasaddfnlemg 13016 f1ghm0to0 13478 ghmf1 13479 imasring 13696 subrgdvds 13867 aprcotr 13917 quscrng 14165 metss2lem 14817 gausslemma2dlem0i 15382 gausslemma2dlem1a 15383 lgseisenlem2 15396 2sqlem6 15445 |
| Copyright terms: Public domain | W3C validator |