![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylbird | Unicode version |
Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
sylbird.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
sylbird.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sylbird |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbird.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimprd 157 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | sylbird.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | syld 45 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3imtr3d 201 drex1 1752 eqreu 2845 onsucsssucr 4385 ordsucunielexmid 4406 ovi3 5861 tfrlem9 6170 dom2lem 6620 distrlem4prl 7340 distrlem4pru 7341 recexprlemm 7380 caucvgprlem1 7435 caucvgprprlemexb 7463 aptisr 7521 renegcl 7946 addid0 8054 remulext2 8280 mulext1 8292 apmul1 8461 nnge1 8653 0mnnnnn0 8913 nn0lt2 9036 zneo 9056 uzind2 9067 fzind 9070 nn0ind-raph 9072 ledivge1le 9412 elfzmlbp 9802 difelfznle 9805 elfzodifsumelfzo 9871 ssfzo12 9894 flqeqceilz 9984 addmodlteq 10064 uzsinds 10108 facdiv 10377 facwordi 10379 bcpasc 10405 addcn2 10971 mulcn2 10973 climrecvg1n 11009 odd2np1 11418 oddge22np1 11426 gcdaddm 11520 algcvgblem 11576 cncongr1 11630 metss2lem 12486 |
Copyright terms: Public domain | W3C validator |