| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylbird | Unicode version | ||
| Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| sylbird.1 |
|
| sylbird.2 |
|
| Ref | Expression |
|---|---|
| sylbird |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbird.1 |
. . 3
| |
| 2 | 1 | biimprd 158 |
. 2
|
| 3 | sylbird.2 |
. 2
| |
| 4 | 2, 3 | syld 45 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr3d 202 drex1 1822 eqreu 2969 onsucsssucr 4565 ordsucunielexmid 4587 ovi3 6096 tfrlem9 6418 dom2lem 6876 distrlem4prl 7717 distrlem4pru 7718 recexprlemm 7757 caucvgprlem1 7812 caucvgprprlemexb 7840 aptisr 7912 map2psrprg 7938 renegcl 8353 addid0 8465 remulext2 8693 mulext1 8705 apmul1 8881 nnge1 9079 0mnnnnn0 9347 nn0lt2 9474 zneo 9494 uzind2 9505 fzind 9508 nn0ind-raph 9510 ledivge1le 9868 elfzmlbp 10274 difelfznle 10277 elfzodifsumelfzo 10352 ssfzo12 10375 flqeqceilz 10485 addmodlteq 10565 uzsinds 10611 qsqeqor 10817 facdiv 10905 facwordi 10907 bcpasc 10933 ccatsymb 11081 swrdsbslen 11142 swrdspsleq 11143 swrdlsw 11145 swrdswrdlem 11180 addcn2 11696 mulcn2 11698 climrecvg1n 11734 odd2np1 12259 oddge22np1 12267 bitsfzo 12341 gcdaddm 12380 algcvgblem 12446 cncongr1 12500 pcdvdsb 12718 pcaddlem 12737 infpnlem1 12757 prmunb 12760 imasaddfnlemg 13221 f1ghm0to0 13683 ghmf1 13684 imasring 13901 subrgdvds 14072 aprcotr 14122 quscrng 14370 metss2lem 15044 gausslemma2dlem0i 15609 gausslemma2dlem1a 15610 lgseisenlem2 15623 2sqlem6 15672 incistruhgr 15761 |
| Copyright terms: Public domain | W3C validator |