Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-indeq Unicode version

Theorem bj-indeq 14821
Description: Equality property for Ind. (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-indeq  |-  ( A  =  B  ->  (Ind  A 
<-> Ind 
B ) )

Proof of Theorem bj-indeq
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eleq2 2241 . . 3  |-  ( A  =  B  ->  ( (/) 
e.  A  <->  (/)  e.  B
) )
2 eleq2 2241 . . . 4  |-  ( A  =  B  ->  ( suc  x  e.  A  <->  suc  x  e.  B ) )
32raleqbi1dv 2681 . . 3  |-  ( A  =  B  ->  ( A. x  e.  A  suc  x  e.  A  <->  A. x  e.  B  suc  x  e.  B ) )
41, 3anbi12d 473 . 2  |-  ( A  =  B  ->  (
( (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )  <->  (
(/)  e.  B  /\  A. x  e.  B  suc  x  e.  B )
) )
5 df-bj-ind 14819 . 2  |-  (Ind  A  <->  (
(/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )
)
6 df-bj-ind 14819 . 2  |-  (Ind  B  <->  (
(/)  e.  B  /\  A. x  e.  B  suc  x  e.  B )
)
74, 5, 63bitr4g 223 1  |-  ( A  =  B  ->  (Ind  A 
<-> Ind 
B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   (/)c0 3424   suc csuc 4367  Ind wind 14818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-bj-ind 14819
This theorem is referenced by:  bj-omind  14826  bj-omssind  14827  bj-ssom  14828  bj-om  14829  bj-2inf  14830
  Copyright terms: Public domain W3C validator