Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-indeq Unicode version

Theorem bj-indeq 16292
Description: Equality property for Ind. (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-indeq  |-  ( A  =  B  ->  (Ind  A 
<-> Ind 
B ) )

Proof of Theorem bj-indeq
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eleq2 2293 . . 3  |-  ( A  =  B  ->  ( (/) 
e.  A  <->  (/)  e.  B
) )
2 eleq2 2293 . . . 4  |-  ( A  =  B  ->  ( suc  x  e.  A  <->  suc  x  e.  B ) )
32raleqbi1dv 2740 . . 3  |-  ( A  =  B  ->  ( A. x  e.  A  suc  x  e.  A  <->  A. x  e.  B  suc  x  e.  B ) )
41, 3anbi12d 473 . 2  |-  ( A  =  B  ->  (
( (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )  <->  (
(/)  e.  B  /\  A. x  e.  B  suc  x  e.  B )
) )
5 df-bj-ind 16290 . 2  |-  (Ind  A  <->  (
(/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )
)
6 df-bj-ind 16290 . 2  |-  (Ind  B  <->  (
(/)  e.  B  /\  A. x  e.  B  suc  x  e.  B )
)
74, 5, 63bitr4g 223 1  |-  ( A  =  B  ->  (Ind  A 
<-> Ind 
B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   (/)c0 3491   suc csuc 4456  Ind wind 16289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-bj-ind 16290
This theorem is referenced by:  bj-omind  16297  bj-omssind  16298  bj-ssom  16299  bj-om  16300  bj-2inf  16301
  Copyright terms: Public domain W3C validator