Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-dfom Unicode version

Theorem bj-dfom 15425
Description: Alternate definition of  om, as the intersection of all the inductive sets. Proposal: make this the definition. (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-dfom  |-  om  =  |^| { x  | Ind  x }

Proof of Theorem bj-dfom
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfom3 4624 . 2  |-  om  =  |^| { x  |  (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x ) }
2 df-bj-ind 15419 . . . . 5  |-  (Ind  x  <->  (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )
)
32bicomi 132 . . . 4  |-  ( (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )  <-> Ind  x )
43abbii 2309 . . 3  |-  { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  =  {
x  | Ind  x }
54inteqi 3874 . 2  |-  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  =  |^| { x  | Ind  x }
61, 5eqtri 2214 1  |-  om  =  |^| { x  | Ind  x }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    e. wcel 2164   {cab 2179   A.wral 2472   (/)c0 3446   |^|cint 3870   suc csuc 4396   omcom 4622  Ind wind 15418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-int 3871  df-iom 4623  df-bj-ind 15419
This theorem is referenced by:  bj-omind  15426  bj-omssind  15427  bj-ssom  15428
  Copyright terms: Public domain W3C validator