Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-dfom Unicode version

Theorem bj-dfom 13968
Description: Alternate definition of  om, as the intersection of all the inductive sets. Proposal: make this the definition. (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-dfom  |-  om  =  |^| { x  | Ind  x }

Proof of Theorem bj-dfom
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfom3 4576 . 2  |-  om  =  |^| { x  |  (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x ) }
2 df-bj-ind 13962 . . . . 5  |-  (Ind  x  <->  (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )
)
32bicomi 131 . . . 4  |-  ( (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )  <-> Ind  x )
43abbii 2286 . . 3  |-  { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  =  {
x  | Ind  x }
54inteqi 3835 . 2  |-  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  =  |^| { x  | Ind  x }
61, 5eqtri 2191 1  |-  om  =  |^| { x  | Ind  x }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1348    e. wcel 2141   {cab 2156   A.wral 2448   (/)c0 3414   |^|cint 3831   suc csuc 4350   omcom 4574  Ind wind 13961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-int 3832  df-iom 4575  df-bj-ind 13962
This theorem is referenced by:  bj-omind  13969  bj-omssind  13970  bj-ssom  13971
  Copyright terms: Public domain W3C validator