Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-dfom | Unicode version |
Description: Alternate definition of , as the intersection of all the inductive sets. Proposal: make this the definition. (Contributed by BJ, 30-Nov-2019.) |
Ref | Expression |
---|---|
bj-dfom | Ind |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfom3 4585 | . 2 | |
2 | df-bj-ind 14248 | . . . . 5 Ind | |
3 | 2 | bicomi 132 | . . . 4 Ind |
4 | 3 | abbii 2291 | . . 3 Ind |
5 | 4 | inteqi 3844 | . 2 Ind |
6 | 1, 5 | eqtri 2196 | 1 Ind |
Colors of variables: wff set class |
Syntax hints: wa 104 wceq 1353 wcel 2146 cab 2161 wral 2453 c0 3420 cint 3840 csuc 4359 com 4583 Ind wind 14247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-int 3841 df-iom 4584 df-bj-ind 14248 |
This theorem is referenced by: bj-omind 14255 bj-omssind 14256 bj-ssom 14257 |
Copyright terms: Public domain | W3C validator |