Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-dfom Unicode version

Theorem bj-dfom 15869
Description: Alternate definition of  om, as the intersection of all the inductive sets. Proposal: make this the definition. (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-dfom  |-  om  =  |^| { x  | Ind  x }

Proof of Theorem bj-dfom
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfom3 4640 . 2  |-  om  =  |^| { x  |  (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x ) }
2 df-bj-ind 15863 . . . . 5  |-  (Ind  x  <->  (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )
)
32bicomi 132 . . . 4  |-  ( (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )  <-> Ind  x )
43abbii 2321 . . 3  |-  { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  =  {
x  | Ind  x }
54inteqi 3889 . 2  |-  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  =  |^| { x  | Ind  x }
61, 5eqtri 2226 1  |-  om  =  |^| { x  | Ind  x }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373    e. wcel 2176   {cab 2191   A.wral 2484   (/)c0 3460   |^|cint 3885   suc csuc 4412   omcom 4638  Ind wind 15862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-int 3886  df-iom 4639  df-bj-ind 15863
This theorem is referenced by:  bj-omind  15870  bj-omssind  15871  bj-ssom  15872
  Copyright terms: Public domain W3C validator