Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-dfom Unicode version

Theorem bj-dfom 14254
Description: Alternate definition of  om, as the intersection of all the inductive sets. Proposal: make this the definition. (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-dfom  |-  om  =  |^| { x  | Ind  x }

Proof of Theorem bj-dfom
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfom3 4585 . 2  |-  om  =  |^| { x  |  (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x ) }
2 df-bj-ind 14248 . . . . 5  |-  (Ind  x  <->  (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )
)
32bicomi 132 . . . 4  |-  ( (
(/)  e.  x  /\  A. y  e.  x  suc  y  e.  x )  <-> Ind  x )
43abbii 2291 . . 3  |-  { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  =  {
x  | Ind  x }
54inteqi 3844 . 2  |-  |^| { x  |  ( (/)  e.  x  /\  A. y  e.  x  suc  y  e.  x
) }  =  |^| { x  | Ind  x }
61, 5eqtri 2196 1  |-  om  =  |^| { x  | Ind  x }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353    e. wcel 2146   {cab 2161   A.wral 2453   (/)c0 3420   |^|cint 3840   suc csuc 4359   omcom 4583  Ind wind 14247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-int 3841  df-iom 4584  df-bj-ind 14248
This theorem is referenced by:  bj-omind  14255  bj-omssind  14256  bj-ssom  14257
  Copyright terms: Public domain W3C validator