Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-ssom | Unicode version |
Description: A characterization of subclasses of . (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-ssom | Ind |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssint 3845 | . . 3 Ind Ind | |
2 | df-ral 2453 | . . 3 Ind Ind | |
3 | vex 2733 | . . . . . 6 | |
4 | bj-indeq 13924 | . . . . . 6 Ind Ind | |
5 | 3, 4 | elab 2874 | . . . . 5 Ind Ind |
6 | 5 | imbi1i 237 | . . . 4 Ind Ind |
7 | 6 | albii 1463 | . . 3 Ind Ind |
8 | 1, 2, 7 | 3bitrri 206 | . 2 Ind Ind |
9 | bj-dfom 13928 | . . . 4 Ind | |
10 | 9 | eqcomi 2174 | . . 3 Ind |
11 | 10 | sseq2i 3174 | . 2 Ind |
12 | 8, 11 | bitri 183 | 1 Ind |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1346 wcel 2141 cab 2156 wral 2448 wss 3121 cint 3829 com 4572 Ind wind 13921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-in 3127 df-ss 3134 df-int 3830 df-iom 4573 df-bj-ind 13922 |
This theorem is referenced by: bj-om 13932 |
Copyright terms: Public domain | W3C validator |