| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-ssom | Unicode version | ||
| Description: A characterization of
subclasses of |
| Ref | Expression |
|---|---|
| bj-ssom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssint 3939 |
. . 3
| |
| 2 | df-ral 2513 |
. . 3
| |
| 3 | vex 2802 |
. . . . . 6
| |
| 4 | bj-indeq 16292 |
. . . . . 6
| |
| 5 | 3, 4 | elab 2947 |
. . . . 5
|
| 6 | 5 | imbi1i 238 |
. . . 4
|
| 7 | 6 | albii 1516 |
. . 3
|
| 8 | 1, 2, 7 | 3bitrri 207 |
. 2
|
| 9 | bj-dfom 16296 |
. . . 4
| |
| 10 | 9 | eqcomi 2233 |
. . 3
|
| 11 | 10 | sseq2i 3251 |
. 2
|
| 12 | 8, 11 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-in 3203 df-ss 3210 df-int 3924 df-iom 4683 df-bj-ind 16290 |
| This theorem is referenced by: bj-om 16300 |
| Copyright terms: Public domain | W3C validator |