Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-ssom Unicode version

Theorem bj-ssom 16299
Description: A characterization of subclasses of  om. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ssom  |-  ( A. x (Ind  x  ->  A 
C_  x )  <->  A  C_  om )
Distinct variable group:    x, A

Proof of Theorem bj-ssom
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssint 3939 . . 3  |-  ( A 
C_  |^| { y  | Ind  y }  <->  A. x  e.  { y  | Ind  y } A  C_  x )
2 df-ral 2513 . . 3  |-  ( A. x  e.  { y  | Ind  y } A  C_  x 
<-> 
A. x ( x  e.  { y  | Ind  y }  ->  A  C_  x ) )
3 vex 2802 . . . . . 6  |-  x  e. 
_V
4 bj-indeq 16292 . . . . . 6  |-  ( y  =  x  ->  (Ind  y 
<-> Ind  x ) )
53, 4elab 2947 . . . . 5  |-  ( x  e.  { y  | Ind  y }  <-> Ind  x )
65imbi1i 238 . . . 4  |-  ( ( x  e.  { y  | Ind  y }  ->  A 
C_  x )  <->  (Ind  x  ->  A  C_  x )
)
76albii 1516 . . 3  |-  ( A. x ( x  e. 
{ y  | Ind  y }  ->  A  C_  x
)  <->  A. x (Ind  x  ->  A  C_  x )
)
81, 2, 73bitrri 207 . 2  |-  ( A. x (Ind  x  ->  A 
C_  x )  <->  A  C_  |^| { y  | Ind  y } )
9 bj-dfom 16296 . . . 4  |-  om  =  |^| { y  | Ind  y }
109eqcomi 2233 . . 3  |-  |^| { y  | Ind  y }  =  om
1110sseq2i 3251 . 2  |-  ( A 
C_  |^| { y  | Ind  y }  <->  A  C_  om )
128, 11bitri 184 1  |-  ( A. x (Ind  x  ->  A 
C_  x )  <->  A  C_  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1393    e. wcel 2200   {cab 2215   A.wral 2508    C_ wss 3197   |^|cint 3923   omcom 4682  Ind wind 16289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-in 3203  df-ss 3210  df-int 3924  df-iom 4683  df-bj-ind 16290
This theorem is referenced by:  bj-om  16300
  Copyright terms: Public domain W3C validator