Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-ssom Unicode version

Theorem bj-ssom 13971
Description: A characterization of subclasses of  om. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ssom  |-  ( A. x (Ind  x  ->  A 
C_  x )  <->  A  C_  om )
Distinct variable group:    x, A

Proof of Theorem bj-ssom
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssint 3847 . . 3  |-  ( A 
C_  |^| { y  | Ind  y }  <->  A. x  e.  { y  | Ind  y } A  C_  x )
2 df-ral 2453 . . 3  |-  ( A. x  e.  { y  | Ind  y } A  C_  x 
<-> 
A. x ( x  e.  { y  | Ind  y }  ->  A  C_  x ) )
3 vex 2733 . . . . . 6  |-  x  e. 
_V
4 bj-indeq 13964 . . . . . 6  |-  ( y  =  x  ->  (Ind  y 
<-> Ind  x ) )
53, 4elab 2874 . . . . 5  |-  ( x  e.  { y  | Ind  y }  <-> Ind  x )
65imbi1i 237 . . . 4  |-  ( ( x  e.  { y  | Ind  y }  ->  A 
C_  x )  <->  (Ind  x  ->  A  C_  x )
)
76albii 1463 . . 3  |-  ( A. x ( x  e. 
{ y  | Ind  y }  ->  A  C_  x
)  <->  A. x (Ind  x  ->  A  C_  x )
)
81, 2, 73bitrri 206 . 2  |-  ( A. x (Ind  x  ->  A 
C_  x )  <->  A  C_  |^| { y  | Ind  y } )
9 bj-dfom 13968 . . . 4  |-  om  =  |^| { y  | Ind  y }
109eqcomi 2174 . . 3  |-  |^| { y  | Ind  y }  =  om
1110sseq2i 3174 . 2  |-  ( A 
C_  |^| { y  | Ind  y }  <->  A  C_  om )
128, 11bitri 183 1  |-  ( A. x (Ind  x  ->  A 
C_  x )  <->  A  C_  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1346    e. wcel 2141   {cab 2156   A.wral 2448    C_ wss 3121   |^|cint 3831   omcom 4574  Ind wind 13961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-in 3127  df-ss 3134  df-int 3832  df-iom 4575  df-bj-ind 13962
This theorem is referenced by:  bj-om  13972
  Copyright terms: Public domain W3C validator