Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-ssom Unicode version

Theorem bj-ssom 15909
Description: A characterization of subclasses of  om. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ssom  |-  ( A. x (Ind  x  ->  A 
C_  x )  <->  A  C_  om )
Distinct variable group:    x, A

Proof of Theorem bj-ssom
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssint 3901 . . 3  |-  ( A 
C_  |^| { y  | Ind  y }  <->  A. x  e.  { y  | Ind  y } A  C_  x )
2 df-ral 2489 . . 3  |-  ( A. x  e.  { y  | Ind  y } A  C_  x 
<-> 
A. x ( x  e.  { y  | Ind  y }  ->  A  C_  x ) )
3 vex 2775 . . . . . 6  |-  x  e. 
_V
4 bj-indeq 15902 . . . . . 6  |-  ( y  =  x  ->  (Ind  y 
<-> Ind  x ) )
53, 4elab 2917 . . . . 5  |-  ( x  e.  { y  | Ind  y }  <-> Ind  x )
65imbi1i 238 . . . 4  |-  ( ( x  e.  { y  | Ind  y }  ->  A 
C_  x )  <->  (Ind  x  ->  A  C_  x )
)
76albii 1493 . . 3  |-  ( A. x ( x  e. 
{ y  | Ind  y }  ->  A  C_  x
)  <->  A. x (Ind  x  ->  A  C_  x )
)
81, 2, 73bitrri 207 . 2  |-  ( A. x (Ind  x  ->  A 
C_  x )  <->  A  C_  |^| { y  | Ind  y } )
9 bj-dfom 15906 . . . 4  |-  om  =  |^| { y  | Ind  y }
109eqcomi 2209 . . 3  |-  |^| { y  | Ind  y }  =  om
1110sseq2i 3220 . 2  |-  ( A 
C_  |^| { y  | Ind  y }  <->  A  C_  om )
128, 11bitri 184 1  |-  ( A. x (Ind  x  ->  A 
C_  x )  <->  A  C_  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371    e. wcel 2176   {cab 2191   A.wral 2484    C_ wss 3166   |^|cint 3885   omcom 4639  Ind wind 15899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-in 3172  df-ss 3179  df-int 3886  df-iom 4640  df-bj-ind 15900
This theorem is referenced by:  bj-om  15910
  Copyright terms: Public domain W3C validator