| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfbr | Unicode version | ||
| Description: Bound-variable hypothesis builder for binary relation. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfbr.1 |
|
| nfbr.2 |
|
| nfbr.3 |
|
| Ref | Expression |
|---|---|
| nfbr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfbr.1 |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | nfbr.2 |
. . . 4
| |
| 4 | 3 | a1i 9 |
. . 3
|
| 5 | nfbr.3 |
. . . 4
| |
| 6 | 5 | a1i 9 |
. . 3
|
| 7 | 2, 4, 6 | nfbrd 4129 |
. 2
|
| 8 | 7 | mptru 1404 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 |
| This theorem is referenced by: sbcbrg 4138 nfpo 4392 nfso 4393 pofun 4403 nfse 4432 nffrfor 4439 nfwe 4446 nfco 4887 nfcnv 4901 dfdmf 4916 dfrnf 4965 nfdm 4968 dffun6f 5331 dffun4f 5334 nffv 5637 funfvdm2f 5699 fvmptss2 5709 f1ompt 5786 fmptco 5801 nfiso 5930 nfofr 6225 ofrfval2 6235 tposoprab 6426 xpcomco 6985 nfsup 7159 caucvgprprlemaddq 7895 lble 9094 nfsum1 11867 nfsum 11868 fsum00 11973 mertenslem2 12047 nfcprod1 12065 nfcprod 12066 fprodap0 12132 fprodrec 12140 fproddivapf 12142 fprodap0f 12147 fprodle 12151 oddpwdclemdvds 12692 oddpwdclemndvds 12693 |
| Copyright terms: Public domain | W3C validator |