| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfbr | Unicode version | ||
| Description: Bound-variable hypothesis builder for binary relation. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfbr.1 |
|
| nfbr.2 |
|
| nfbr.3 |
|
| Ref | Expression |
|---|---|
| nfbr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfbr.1 |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | nfbr.2 |
. . . 4
| |
| 4 | 3 | a1i 9 |
. . 3
|
| 5 | nfbr.3 |
. . . 4
| |
| 6 | 5 | a1i 9 |
. . 3
|
| 7 | 2, 4, 6 | nfbrd 4105 |
. 2
|
| 8 | 7 | mptru 1382 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 |
| This theorem is referenced by: sbcbrg 4114 nfpo 4366 nfso 4367 pofun 4377 nfse 4406 nffrfor 4413 nfwe 4420 nfco 4861 nfcnv 4875 dfdmf 4890 dfrnf 4938 nfdm 4941 dffun6f 5303 dffun4f 5306 nffv 5609 funfvdm2f 5667 fvmptss2 5677 f1ompt 5754 fmptco 5769 nfiso 5898 nfofr 6188 ofrfval2 6198 tposoprab 6389 xpcomco 6946 nfsup 7120 caucvgprprlemaddq 7856 lble 9055 nfsum1 11782 nfsum 11783 fsum00 11888 mertenslem2 11962 nfcprod1 11980 nfcprod 11981 fprodap0 12047 fprodrec 12055 fproddivapf 12057 fprodap0f 12062 fprodle 12066 oddpwdclemdvds 12607 oddpwdclemndvds 12608 |
| Copyright terms: Public domain | W3C validator |