![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfbr | Unicode version |
Description: Bound-variable hypothesis builder for binary relation. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nfbr.1 |
![]() ![]() ![]() ![]() |
nfbr.2 |
![]() ![]() ![]() ![]() |
nfbr.3 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfbr |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfbr.1 |
. . . 4
![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | nfbr.2 |
. . . 4
![]() ![]() ![]() ![]() | |
4 | 3 | a1i 9 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | nfbr.3 |
. . . 4
![]() ![]() ![]() ![]() | |
6 | 5 | a1i 9 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 2, 4, 6 | nfbrd 4074 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 7 | mptru 1373 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 |
This theorem is referenced by: sbcbrg 4083 nfpo 4332 nfso 4333 pofun 4343 nfse 4372 nffrfor 4379 nfwe 4386 nfco 4827 nfcnv 4841 dfdmf 4855 dfrnf 4903 nfdm 4906 dffun6f 5267 dffun4f 5270 nffv 5564 funfvdm2f 5622 fvmptss2 5632 f1ompt 5709 fmptco 5724 nfiso 5849 nfofr 6137 ofrfval2 6147 tposoprab 6333 xpcomco 6880 nfsup 7051 caucvgprprlemaddq 7768 lble 8966 nfsum1 11499 nfsum 11500 fsum00 11605 mertenslem2 11679 nfcprod1 11697 nfcprod 11698 fprodap0 11764 fprodrec 11772 fproddivapf 11774 fprodap0f 11779 fprodle 11783 oddpwdclemdvds 12308 oddpwdclemndvds 12309 |
Copyright terms: Public domain | W3C validator |