Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfbr | Unicode version |
Description: Bound-variable hypothesis builder for binary relation. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nfbr.1 | |
nfbr.2 | |
nfbr.3 |
Ref | Expression |
---|---|
nfbr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfbr.1 | . . . 4 | |
2 | 1 | a1i 9 | . . 3 |
3 | nfbr.2 | . . . 4 | |
4 | 3 | a1i 9 | . . 3 |
5 | nfbr.3 | . . . 4 | |
6 | 5 | a1i 9 | . . 3 |
7 | 2, 4, 6 | nfbrd 4027 | . 2 |
8 | 7 | mptru 1352 | 1 |
Colors of variables: wff set class |
Syntax hints: wtru 1344 wnf 1448 wnfc 2295 class class class wbr 3982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 |
This theorem is referenced by: sbcbrg 4036 nfpo 4279 nfso 4280 pofun 4290 nfse 4319 nffrfor 4326 nfwe 4333 nfco 4769 nfcnv 4783 dfdmf 4797 dfrnf 4845 nfdm 4848 dffun6f 5201 dffun4f 5204 nffv 5496 funfvdm2f 5551 fvmptss2 5561 f1ompt 5636 fmptco 5651 nfiso 5774 nfofr 6056 ofrfval2 6066 tposoprab 6248 xpcomco 6792 nfsup 6957 caucvgprprlemaddq 7649 lble 8842 nfsum1 11297 nfsum 11298 fsum00 11403 mertenslem2 11477 nfcprod1 11495 nfcprod 11496 fprodap0 11562 fprodrec 11570 fproddivapf 11572 fprodap0f 11577 fprodle 11581 oddpwdclemdvds 12102 oddpwdclemndvds 12103 |
Copyright terms: Public domain | W3C validator |