| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfbr | Unicode version | ||
| Description: Bound-variable hypothesis builder for binary relation. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfbr.1 |
|
| nfbr.2 |
|
| nfbr.3 |
|
| Ref | Expression |
|---|---|
| nfbr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfbr.1 |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | nfbr.2 |
. . . 4
| |
| 4 | 3 | a1i 9 |
. . 3
|
| 5 | nfbr.3 |
. . . 4
| |
| 6 | 5 | a1i 9 |
. . 3
|
| 7 | 2, 4, 6 | nfbrd 4079 |
. 2
|
| 8 | 7 | mptru 1373 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 |
| This theorem is referenced by: sbcbrg 4088 nfpo 4337 nfso 4338 pofun 4348 nfse 4377 nffrfor 4384 nfwe 4391 nfco 4832 nfcnv 4846 dfdmf 4860 dfrnf 4908 nfdm 4911 dffun6f 5272 dffun4f 5275 nffv 5571 funfvdm2f 5629 fvmptss2 5639 f1ompt 5716 fmptco 5731 nfiso 5856 nfofr 6146 ofrfval2 6156 tposoprab 6347 xpcomco 6894 nfsup 7067 caucvgprprlemaddq 7792 lble 8991 nfsum1 11538 nfsum 11539 fsum00 11644 mertenslem2 11718 nfcprod1 11736 nfcprod 11737 fprodap0 11803 fprodrec 11811 fproddivapf 11813 fprodap0f 11818 fprodle 11822 oddpwdclemdvds 12363 oddpwdclemndvds 12364 |
| Copyright terms: Public domain | W3C validator |