![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfbr | Unicode version |
Description: Bound-variable hypothesis builder for binary relation. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nfbr.1 |
![]() ![]() ![]() ![]() |
nfbr.2 |
![]() ![]() ![]() ![]() |
nfbr.3 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfbr |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfbr.1 |
. . . 4
![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | nfbr.2 |
. . . 4
![]() ![]() ![]() ![]() | |
4 | 3 | a1i 9 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | nfbr.3 |
. . . 4
![]() ![]() ![]() ![]() | |
6 | 5 | a1i 9 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 2, 4, 6 | nfbrd 4049 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 7 | mptru 1362 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2740 df-un 3134 df-sn 3599 df-pr 3600 df-op 3602 df-br 4005 |
This theorem is referenced by: sbcbrg 4058 nfpo 4302 nfso 4303 pofun 4313 nfse 4342 nffrfor 4349 nfwe 4356 nfco 4793 nfcnv 4807 dfdmf 4821 dfrnf 4869 nfdm 4872 dffun6f 5230 dffun4f 5233 nffv 5526 funfvdm2f 5582 fvmptss2 5592 f1ompt 5668 fmptco 5683 nfiso 5807 nfofr 6089 ofrfval2 6099 tposoprab 6281 xpcomco 6826 nfsup 6991 caucvgprprlemaddq 7707 lble 8904 nfsum1 11364 nfsum 11365 fsum00 11470 mertenslem2 11544 nfcprod1 11562 nfcprod 11563 fprodap0 11629 fprodrec 11637 fproddivapf 11639 fprodap0f 11644 fprodle 11648 oddpwdclemdvds 12170 oddpwdclemndvds 12171 |
Copyright terms: Public domain | W3C validator |