| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfbr | Unicode version | ||
| Description: Bound-variable hypothesis builder for binary relation. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfbr.1 |
|
| nfbr.2 |
|
| nfbr.3 |
|
| Ref | Expression |
|---|---|
| nfbr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfbr.1 |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | nfbr.2 |
. . . 4
| |
| 4 | 3 | a1i 9 |
. . 3
|
| 5 | nfbr.3 |
. . . 4
| |
| 6 | 5 | a1i 9 |
. . 3
|
| 7 | 2, 4, 6 | nfbrd 4090 |
. 2
|
| 8 | 7 | mptru 1382 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 |
| This theorem is referenced by: sbcbrg 4099 nfpo 4349 nfso 4350 pofun 4360 nfse 4389 nffrfor 4396 nfwe 4403 nfco 4844 nfcnv 4858 dfdmf 4872 dfrnf 4920 nfdm 4923 dffun6f 5285 dffun4f 5288 nffv 5588 funfvdm2f 5646 fvmptss2 5656 f1ompt 5733 fmptco 5748 nfiso 5877 nfofr 6167 ofrfval2 6177 tposoprab 6368 xpcomco 6923 nfsup 7096 caucvgprprlemaddq 7823 lble 9022 nfsum1 11700 nfsum 11701 fsum00 11806 mertenslem2 11880 nfcprod1 11898 nfcprod 11899 fprodap0 11965 fprodrec 11973 fproddivapf 11975 fprodap0f 11980 fprodle 11984 oddpwdclemdvds 12525 oddpwdclemndvds 12526 |
| Copyright terms: Public domain | W3C validator |