ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brdif Unicode version

Theorem brdif 4086
Description: The difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2011.)
Assertion
Ref Expression
brdif  |-  ( A ( R  \  S
) B  <->  ( A R B  /\  -.  A S B ) )

Proof of Theorem brdif
StepHypRef Expression
1 eldif 3166 . 2  |-  ( <. A ,  B >.  e.  ( R  \  S
)  <->  ( <. A ,  B >.  e.  R  /\  -.  <. A ,  B >.  e.  S ) )
2 df-br 4034 . 2  |-  ( A ( R  \  S
) B  <->  <. A ,  B >.  e.  ( R 
\  S ) )
3 df-br 4034 . . 3  |-  ( A R B  <->  <. A ,  B >.  e.  R )
4 df-br 4034 . . . 4  |-  ( A S B  <->  <. A ,  B >.  e.  S )
54notbii 669 . . 3  |-  ( -.  A S B  <->  -.  <. A ,  B >.  e.  S )
63, 5anbi12i 460 . 2  |-  ( ( A R B  /\  -.  A S B )  <-> 
( <. A ,  B >.  e.  R  /\  -.  <. A ,  B >.  e.  S ) )
71, 2, 63bitr4i 212 1  |-  ( A ( R  \  S
) B  <->  ( A R B  /\  -.  A S B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    e. wcel 2167    \ cdif 3154   <.cop 3625   class class class wbr 4033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-br 4034
This theorem is referenced by:  fndmdif  5667  brdifun  6619
  Copyright terms: Public domain W3C validator