Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  brdif Unicode version

Theorem brdif 3990
 Description: The difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2011.)
Assertion
Ref Expression
brdif

Proof of Theorem brdif
StepHypRef Expression
1 eldif 3086 . 2
2 df-br 3939 . 2
3 df-br 3939 . . 3
4 df-br 3939 . . . 4
54notbii 658 . . 3
63, 5anbi12i 456 . 2
71, 2, 63bitr4i 211 1
 Colors of variables: wff set class Syntax hints:   wn 3   wa 103   wb 104   wcel 1481   cdif 3074  cop 3536   class class class wbr 3938 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122 This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-v 2692  df-dif 3079  df-br 3939 This theorem is referenced by:  fndmdif  5534  brdifun  6465
 Copyright terms: Public domain W3C validator