ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcbrg Unicode version

Theorem sbcbrg 4114
Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
sbcbrg  |-  ( A  e.  D  ->  ( [. A  /  x ]. B R C  <->  [_ A  /  x ]_ B [_ A  /  x ]_ R [_ A  /  x ]_ C
) )

Proof of Theorem sbcbrg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3008 . 2  |-  ( y  =  A  ->  ( [ y  /  x ] B R C  <->  [. A  /  x ]. B R C ) )
2 csbeq1 3104 . . 3  |-  ( y  =  A  ->  [_ y  /  x ]_ B  = 
[_ A  /  x ]_ B )
3 csbeq1 3104 . . 3  |-  ( y  =  A  ->  [_ y  /  x ]_ R  = 
[_ A  /  x ]_ R )
4 csbeq1 3104 . . 3  |-  ( y  =  A  ->  [_ y  /  x ]_ C  = 
[_ A  /  x ]_ C )
52, 3, 4breq123d 4073 . 2  |-  ( y  =  A  ->  ( [_ y  /  x ]_ B [_ y  /  x ]_ R [_ y  /  x ]_ C  <->  [_ A  /  x ]_ B [_ A  /  x ]_ R [_ A  /  x ]_ C
) )
6 nfcsb1v 3134 . . . 4  |-  F/_ x [_ y  /  x ]_ B
7 nfcsb1v 3134 . . . 4  |-  F/_ x [_ y  /  x ]_ R
8 nfcsb1v 3134 . . . 4  |-  F/_ x [_ y  /  x ]_ C
96, 7, 8nfbr 4106 . . 3  |-  F/ x [_ y  /  x ]_ B [_ y  /  x ]_ R [_ y  /  x ]_ C
10 csbeq1a 3110 . . . 4  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
11 csbeq1a 3110 . . . 4  |-  ( x  =  y  ->  R  =  [_ y  /  x ]_ R )
12 csbeq1a 3110 . . . 4  |-  ( x  =  y  ->  C  =  [_ y  /  x ]_ C )
1310, 11, 12breq123d 4073 . . 3  |-  ( x  =  y  ->  ( B R C  <->  [_ y  /  x ]_ B [_ y  /  x ]_ R [_ y  /  x ]_ C
) )
149, 13sbie 1815 . 2  |-  ( [ y  /  x ] B R C  <->  [_ y  /  x ]_ B [_ y  /  x ]_ R [_ y  /  x ]_ C
)
151, 5, 14vtoclbg 2839 1  |-  ( A  e.  D  ->  ( [. A  /  x ]. B R C  <->  [_ A  /  x ]_ B [_ A  /  x ]_ R [_ A  /  x ]_ C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   [wsb 1786    e. wcel 2178   [.wsbc 3005   [_csb 3101   class class class wbr 4059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060
This theorem is referenced by:  sbcbr12g  4115  csbcnvg  4880  sbcfung  5314  csbfv12g  5637
  Copyright terms: Public domain W3C validator