ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcbrg Unicode version

Theorem sbcbrg 4087
Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
sbcbrg  |-  ( A  e.  D  ->  ( [. A  /  x ]. B R C  <->  [_ A  /  x ]_ B [_ A  /  x ]_ R [_ A  /  x ]_ C
) )

Proof of Theorem sbcbrg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 2992 . 2  |-  ( y  =  A  ->  ( [ y  /  x ] B R C  <->  [. A  /  x ]. B R C ) )
2 csbeq1 3087 . . 3  |-  ( y  =  A  ->  [_ y  /  x ]_ B  = 
[_ A  /  x ]_ B )
3 csbeq1 3087 . . 3  |-  ( y  =  A  ->  [_ y  /  x ]_ R  = 
[_ A  /  x ]_ R )
4 csbeq1 3087 . . 3  |-  ( y  =  A  ->  [_ y  /  x ]_ C  = 
[_ A  /  x ]_ C )
52, 3, 4breq123d 4047 . 2  |-  ( y  =  A  ->  ( [_ y  /  x ]_ B [_ y  /  x ]_ R [_ y  /  x ]_ C  <->  [_ A  /  x ]_ B [_ A  /  x ]_ R [_ A  /  x ]_ C
) )
6 nfcsb1v 3117 . . . 4  |-  F/_ x [_ y  /  x ]_ B
7 nfcsb1v 3117 . . . 4  |-  F/_ x [_ y  /  x ]_ R
8 nfcsb1v 3117 . . . 4  |-  F/_ x [_ y  /  x ]_ C
96, 7, 8nfbr 4079 . . 3  |-  F/ x [_ y  /  x ]_ B [_ y  /  x ]_ R [_ y  /  x ]_ C
10 csbeq1a 3093 . . . 4  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
11 csbeq1a 3093 . . . 4  |-  ( x  =  y  ->  R  =  [_ y  /  x ]_ R )
12 csbeq1a 3093 . . . 4  |-  ( x  =  y  ->  C  =  [_ y  /  x ]_ C )
1310, 11, 12breq123d 4047 . . 3  |-  ( x  =  y  ->  ( B R C  <->  [_ y  /  x ]_ B [_ y  /  x ]_ R [_ y  /  x ]_ C
) )
149, 13sbie 1805 . 2  |-  ( [ y  /  x ] B R C  <->  [_ y  /  x ]_ B [_ y  /  x ]_ R [_ y  /  x ]_ C
)
151, 5, 14vtoclbg 2825 1  |-  ( A  e.  D  ->  ( [. A  /  x ]. B R C  <->  [_ A  /  x ]_ B [_ A  /  x ]_ R [_ A  /  x ]_ C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   [wsb 1776    e. wcel 2167   [.wsbc 2989   [_csb 3084   class class class wbr 4033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034
This theorem is referenced by:  sbcbr12g  4088  csbcnvg  4850  sbcfung  5282  csbfv12g  5596
  Copyright terms: Public domain W3C validator