ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcbrg Unicode version

Theorem sbcbrg 4098
Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
sbcbrg  |-  ( A  e.  D  ->  ( [. A  /  x ]. B R C  <->  [_ A  /  x ]_ B [_ A  /  x ]_ R [_ A  /  x ]_ C
) )

Proof of Theorem sbcbrg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3001 . 2  |-  ( y  =  A  ->  ( [ y  /  x ] B R C  <->  [. A  /  x ]. B R C ) )
2 csbeq1 3096 . . 3  |-  ( y  =  A  ->  [_ y  /  x ]_ B  = 
[_ A  /  x ]_ B )
3 csbeq1 3096 . . 3  |-  ( y  =  A  ->  [_ y  /  x ]_ R  = 
[_ A  /  x ]_ R )
4 csbeq1 3096 . . 3  |-  ( y  =  A  ->  [_ y  /  x ]_ C  = 
[_ A  /  x ]_ C )
52, 3, 4breq123d 4058 . 2  |-  ( y  =  A  ->  ( [_ y  /  x ]_ B [_ y  /  x ]_ R [_ y  /  x ]_ C  <->  [_ A  /  x ]_ B [_ A  /  x ]_ R [_ A  /  x ]_ C
) )
6 nfcsb1v 3126 . . . 4  |-  F/_ x [_ y  /  x ]_ B
7 nfcsb1v 3126 . . . 4  |-  F/_ x [_ y  /  x ]_ R
8 nfcsb1v 3126 . . . 4  |-  F/_ x [_ y  /  x ]_ C
96, 7, 8nfbr 4090 . . 3  |-  F/ x [_ y  /  x ]_ B [_ y  /  x ]_ R [_ y  /  x ]_ C
10 csbeq1a 3102 . . . 4  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
11 csbeq1a 3102 . . . 4  |-  ( x  =  y  ->  R  =  [_ y  /  x ]_ R )
12 csbeq1a 3102 . . . 4  |-  ( x  =  y  ->  C  =  [_ y  /  x ]_ C )
1310, 11, 12breq123d 4058 . . 3  |-  ( x  =  y  ->  ( B R C  <->  [_ y  /  x ]_ B [_ y  /  x ]_ R [_ y  /  x ]_ C
) )
149, 13sbie 1814 . 2  |-  ( [ y  /  x ] B R C  <->  [_ y  /  x ]_ B [_ y  /  x ]_ R [_ y  /  x ]_ C
)
151, 5, 14vtoclbg 2834 1  |-  ( A  e.  D  ->  ( [. A  /  x ]. B R C  <->  [_ A  /  x ]_ B [_ A  /  x ]_ R [_ A  /  x ]_ C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   [wsb 1785    e. wcel 2176   [.wsbc 2998   [_csb 3093   class class class wbr 4044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045
This theorem is referenced by:  sbcbr12g  4099  csbcnvg  4862  sbcfung  5295  csbfv12g  5614
  Copyright terms: Public domain W3C validator