ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brin Unicode version

Theorem brin 4034
Description: The intersection of two relations. (Contributed by FL, 7-Oct-2008.)
Assertion
Ref Expression
brin  |-  ( A ( R  i^i  S
) B  <->  ( A R B  /\  A S B ) )

Proof of Theorem brin
StepHypRef Expression
1 elin 3305 . 2  |-  ( <. A ,  B >.  e.  ( R  i^i  S
)  <->  ( <. A ,  B >.  e.  R  /\  <. A ,  B >.  e.  S ) )
2 df-br 3983 . 2  |-  ( A ( R  i^i  S
) B  <->  <. A ,  B >.  e.  ( R  i^i  S ) )
3 df-br 3983 . . 3  |-  ( A R B  <->  <. A ,  B >.  e.  R )
4 df-br 3983 . . 3  |-  ( A S B  <->  <. A ,  B >.  e.  S )
53, 4anbi12i 456 . 2  |-  ( ( A R B  /\  A S B )  <->  ( <. A ,  B >.  e.  R  /\  <. A ,  B >.  e.  S ) )
61, 2, 53bitr4i 211 1  |-  ( A ( R  i^i  S
) B  <->  ( A R B  /\  A S B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    e. wcel 2136    i^i cin 3115   <.cop 3579   class class class wbr 3982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-br 3983
This theorem is referenced by:  brinxp2  4671  trin2  4995  poirr2  4996  cnvin  5011  tpostpos  6232  erinxp  6575
  Copyright terms: Public domain W3C validator