ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brin Unicode version

Theorem brin 4056
Description: The intersection of two relations. (Contributed by FL, 7-Oct-2008.)
Assertion
Ref Expression
brin  |-  ( A ( R  i^i  S
) B  <->  ( A R B  /\  A S B ) )

Proof of Theorem brin
StepHypRef Expression
1 elin 3319 . 2  |-  ( <. A ,  B >.  e.  ( R  i^i  S
)  <->  ( <. A ,  B >.  e.  R  /\  <. A ,  B >.  e.  S ) )
2 df-br 4005 . 2  |-  ( A ( R  i^i  S
) B  <->  <. A ,  B >.  e.  ( R  i^i  S ) )
3 df-br 4005 . . 3  |-  ( A R B  <->  <. A ,  B >.  e.  R )
4 df-br 4005 . . 3  |-  ( A S B  <->  <. A ,  B >.  e.  S )
53, 4anbi12i 460 . 2  |-  ( ( A R B  /\  A S B )  <->  ( <. A ,  B >.  e.  R  /\  <. A ,  B >.  e.  S ) )
61, 2, 53bitr4i 212 1  |-  ( A ( R  i^i  S
) B  <->  ( A R B  /\  A S B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2148    i^i cin 3129   <.cop 3596   class class class wbr 4004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-in 3136  df-br 4005
This theorem is referenced by:  brinxp2  4694  trin2  5021  poirr2  5022  cnvin  5037  tpostpos  6265  erinxp  6609  isunitd  13275
  Copyright terms: Public domain W3C validator