ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brin Unicode version

Theorem brin 3869
Description: The intersection of two relations. (Contributed by FL, 7-Oct-2008.)
Assertion
Ref Expression
brin  |-  ( A ( R  i^i  S
) B  <->  ( A R B  /\  A S B ) )

Proof of Theorem brin
StepHypRef Expression
1 elin 3172 . 2  |-  ( <. A ,  B >.  e.  ( R  i^i  S
)  <->  ( <. A ,  B >.  e.  R  /\  <. A ,  B >.  e.  S ) )
2 df-br 3823 . 2  |-  ( A ( R  i^i  S
) B  <->  <. A ,  B >.  e.  ( R  i^i  S ) )
3 df-br 3823 . . 3  |-  ( A R B  <->  <. A ,  B >.  e.  R )
4 df-br 3823 . . 3  |-  ( A S B  <->  <. A ,  B >.  e.  S )
53, 4anbi12i 448 . 2  |-  ( ( A R B  /\  A S B )  <->  ( <. A ,  B >.  e.  R  /\  <. A ,  B >.  e.  S ) )
61, 2, 53bitr4i 210 1  |-  ( A ( R  i^i  S
) B  <->  ( A R B  /\  A S B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    e. wcel 1436    i^i cin 2987   <.cop 3434   class class class wbr 3822
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067
This theorem depends on definitions:  df-bi 115  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-v 2617  df-in 2994  df-br 3823
This theorem is referenced by:  brinxp2  4475  trin2  4792  poirr2  4793  cnvin  4807  tpostpos  5985  erinxp  6320
  Copyright terms: Public domain W3C validator