![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > brdif | GIF version |
Description: The difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2011.) |
Ref | Expression |
---|---|
brdif | ⊢ (𝐴(𝑅 ∖ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ ¬ 𝐴𝑆𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3022 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 ∖ 𝑆) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ∧ ¬ 〈𝐴, 𝐵〉 ∈ 𝑆)) | |
2 | df-br 3868 | . 2 ⊢ (𝐴(𝑅 ∖ 𝑆)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝑅 ∖ 𝑆)) | |
3 | df-br 3868 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
4 | df-br 3868 | . . . 4 ⊢ (𝐴𝑆𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆) | |
5 | 4 | notbii 632 | . . 3 ⊢ (¬ 𝐴𝑆𝐵 ↔ ¬ 〈𝐴, 𝐵〉 ∈ 𝑆) |
6 | 3, 5 | anbi12i 449 | . 2 ⊢ ((𝐴𝑅𝐵 ∧ ¬ 𝐴𝑆𝐵) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ∧ ¬ 〈𝐴, 𝐵〉 ∈ 𝑆)) |
7 | 1, 2, 6 | 3bitr4i 211 | 1 ⊢ (𝐴(𝑅 ∖ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ ¬ 𝐴𝑆𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 ↔ wb 104 ∈ wcel 1445 ∖ cdif 3010 〈cop 3469 class class class wbr 3867 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-v 2635 df-dif 3015 df-br 3868 |
This theorem is referenced by: fndmdif 5443 brdifun 6359 |
Copyright terms: Public domain | W3C validator |