Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > brdif | GIF version |
Description: The difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2011.) |
Ref | Expression |
---|---|
brdif | ⊢ (𝐴(𝑅 ∖ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ ¬ 𝐴𝑆𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3130 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑅 ∖ 𝑆) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ∧ ¬ 〈𝐴, 𝐵〉 ∈ 𝑆)) | |
2 | df-br 3990 | . 2 ⊢ (𝐴(𝑅 ∖ 𝑆)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝑅 ∖ 𝑆)) | |
3 | df-br 3990 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
4 | df-br 3990 | . . . 4 ⊢ (𝐴𝑆𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆) | |
5 | 4 | notbii 663 | . . 3 ⊢ (¬ 𝐴𝑆𝐵 ↔ ¬ 〈𝐴, 𝐵〉 ∈ 𝑆) |
6 | 3, 5 | anbi12i 457 | . 2 ⊢ ((𝐴𝑅𝐵 ∧ ¬ 𝐴𝑆𝐵) ↔ (〈𝐴, 𝐵〉 ∈ 𝑅 ∧ ¬ 〈𝐴, 𝐵〉 ∈ 𝑆)) |
7 | 1, 2, 6 | 3bitr4i 211 | 1 ⊢ (𝐴(𝑅 ∖ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ ¬ 𝐴𝑆𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 ↔ wb 104 ∈ wcel 2141 ∖ cdif 3118 〈cop 3586 class class class wbr 3989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 df-br 3990 |
This theorem is referenced by: fndmdif 5601 brdifun 6540 |
Copyright terms: Public domain | W3C validator |