ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brimralrspcev Unicode version

Theorem brimralrspcev 4104
Description: Restricted existential specialization with a restricted universal quantifier over an implication with a relation in the antecedent, closed form. (Contributed by AV, 20-Aug-2022.)
Assertion
Ref Expression
brimralrspcev  |-  ( ( B  e.  X  /\  A. y  e.  Y  ( ( ph  /\  A R B )  ->  ps ) )  ->  E. x  e.  X  A. y  e.  Y  ( ( ph  /\  A R x )  ->  ps )
)
Distinct variable groups:    x, A    x, B, y    x, R    x, X    x, Y    ph, x    ps, x
Allowed substitution hints:    ph( y)    ps( y)    A( y)    R( y)    X( y)    Y( y)

Proof of Theorem brimralrspcev
StepHypRef Expression
1 breq2 4049 . . 3  |-  ( x  =  B  ->  ( A R x  <->  A R B ) )
21anbi2d 464 . 2  |-  ( x  =  B  ->  (
( ph  /\  A R x )  <->  ( ph  /\  A R B ) ) )
32rspceaimv 2885 1  |-  ( ( B  e.  X  /\  A. y  e.  Y  ( ( ph  /\  A R B )  ->  ps ) )  ->  E. x  e.  X  A. y  e.  Y  ( ( ph  /\  A R x )  ->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485   class class class wbr 4045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046
This theorem is referenced by:  dveflem  15231
  Copyright terms: Public domain W3C validator