ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brimralrspcev Unicode version

Theorem brimralrspcev 4119
Description: Restricted existential specialization with a restricted universal quantifier over an implication with a relation in the antecedent, closed form. (Contributed by AV, 20-Aug-2022.)
Assertion
Ref Expression
brimralrspcev  |-  ( ( B  e.  X  /\  A. y  e.  Y  ( ( ph  /\  A R B )  ->  ps ) )  ->  E. x  e.  X  A. y  e.  Y  ( ( ph  /\  A R x )  ->  ps )
)
Distinct variable groups:    x, A    x, B, y    x, R    x, X    x, Y    ph, x    ps, x
Allowed substitution hints:    ph( y)    ps( y)    A( y)    R( y)    X( y)    Y( y)

Proof of Theorem brimralrspcev
StepHypRef Expression
1 breq2 4063 . . 3  |-  ( x  =  B  ->  ( A R x  <->  A R B ) )
21anbi2d 464 . 2  |-  ( x  =  B  ->  (
( ph  /\  A R x )  <->  ( ph  /\  A R B ) ) )
32rspceaimv 2892 1  |-  ( ( B  e.  X  /\  A. y  e.  Y  ( ( ph  /\  A R B )  ->  ps ) )  ->  E. x  e.  X  A. y  e.  Y  ( ( ph  /\  A R x )  ->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487   class class class wbr 4059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060
This theorem is referenced by:  dveflem  15313
  Copyright terms: Public domain W3C validator