ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brimralrspcev Unicode version

Theorem brimralrspcev 4041
Description: Restricted existential specialization with a restricted universal quantifier over an implication with a relation in the antecedent, closed form. (Contributed by AV, 20-Aug-2022.)
Assertion
Ref Expression
brimralrspcev  |-  ( ( B  e.  X  /\  A. y  e.  Y  ( ( ph  /\  A R B )  ->  ps ) )  ->  E. x  e.  X  A. y  e.  Y  ( ( ph  /\  A R x )  ->  ps )
)
Distinct variable groups:    x, A    x, B, y    x, R    x, X    x, Y    ph, x    ps, x
Allowed substitution hints:    ph( y)    ps( y)    A( y)    R( y)    X( y)    Y( y)

Proof of Theorem brimralrspcev
StepHypRef Expression
1 breq2 3986 . . 3  |-  ( x  =  B  ->  ( A R x  <->  A R B ) )
21anbi2d 460 . 2  |-  ( x  =  B  ->  (
( ph  /\  A R x )  <->  ( ph  /\  A R B ) ) )
32rspceaimv 2838 1  |-  ( ( B  e.  X  /\  A. y  e.  Y  ( ( ph  /\  A R B )  ->  ps ) )  ->  E. x  e.  X  A. y  e.  Y  ( ( ph  /\  A R x )  ->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445   class class class wbr 3982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983
This theorem is referenced by:  dveflem  13327
  Copyright terms: Public domain W3C validator