ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dveflem Unicode version

Theorem dveflem 13446
Description: Derivative of the exponential function at 0. The key step in the proof is eftlub 11646, to show that  abs ( exp ( x )  - 
1  -  x )  <_  abs ( x ) ^ 2  x.  (
3  /  4 ). (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
dveflem  |-  0
( CC  _D  exp ) 1

Proof of Theorem dveflem
Dummy variables  k  n  w  u  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 7905 . . 3  |-  0  e.  CC
2 eqid 2170 . . . . 5  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
32cntoptop 13292 . . . 4  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  Top
4 unicntopcntop 13295 . . . . 5  |-  CC  =  U. ( MetOpen `  ( abs  o. 
-  ) )
54ntrtop 12887 . . . 4  |-  ( (
MetOpen `  ( abs  o.  -  ) )  e. 
Top  ->  ( ( int `  ( MetOpen `  ( abs  o. 
-  ) ) ) `
 CC )  =  CC )
63, 5ax-mp 5 . . 3  |-  ( ( int `  ( MetOpen `  ( abs  o.  -  )
) ) `  CC )  =  CC
71, 6eleqtrri 2246 . 2  |-  0  e.  ( ( int `  ( MetOpen
`  ( abs  o.  -  ) ) ) `
 CC )
8 ax-1cn 7860 . . 3  |-  1  e.  CC
9 1rp 9607 . . . . . 6  |-  1  e.  RR+
10 rpmincl 11194 . . . . . 6  |-  ( ( x  e.  RR+  /\  1  e.  RR+ )  -> inf ( { x ,  1 } ,  RR ,  <  )  e.  RR+ )
119, 10mpan2 423 . . . . 5  |-  ( x  e.  RR+  -> inf ( { x ,  1 } ,  RR ,  <  )  e.  RR+ )
12 breq1 3990 . . . . . . . 8  |-  ( u  =  w  ->  (
u #  0  <->  w #  0
) )
1312elrab 2886 . . . . . . 7  |-  ( w  e.  { u  e.  CC  |  u #  0 }  <->  ( w  e.  CC  /\  w #  0 ) )
14 simprl 526 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  (
w  e.  CC  /\  w #  0 ) )  ->  w  e.  CC )
1514subid1d 8212 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  (
w  e.  CC  /\  w #  0 ) )  -> 
( w  -  0 )  =  w )
1615fveq2d 5498 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  (
w  e.  CC  /\  w #  0 ) )  -> 
( abs `  (
w  -  0 ) )  =  ( abs `  w ) )
1716breq1d 3997 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  (
w  e.  CC  /\  w #  0 ) )  -> 
( ( abs `  (
w  -  0 ) )  < inf ( {
x ,  1 } ,  RR ,  <  )  <-> 
( abs `  w
)  < inf ( {
x ,  1 } ,  RR ,  <  ) ) )
1814abscld 11138 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  (
w  e.  CC  /\  w #  0 ) )  -> 
( abs `  w
)  e.  RR )
19 rpre 9610 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  x  e.  RR )
2019adantr 274 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  (
w  e.  CC  /\  w #  0 ) )  ->  x  e.  RR )
21 1red 7928 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  (
w  e.  CC  /\  w #  0 ) )  -> 
1  e.  RR )
22 ltmininf 11191 . . . . . . . . . . 11  |-  ( ( ( abs `  w
)  e.  RR  /\  x  e.  RR  /\  1  e.  RR )  ->  (
( abs `  w
)  < inf ( {
x ,  1 } ,  RR ,  <  )  <-> 
( ( abs `  w
)  <  x  /\  ( abs `  w )  <  1 ) ) )
2318, 20, 21, 22syl3anc 1233 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  (
w  e.  CC  /\  w #  0 ) )  -> 
( ( abs `  w
)  < inf ( {
x ,  1 } ,  RR ,  <  )  <-> 
( ( abs `  w
)  <  x  /\  ( abs `  w )  <  1 ) ) )
2417, 23bitrd 187 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  (
w  e.  CC  /\  w #  0 ) )  -> 
( ( abs `  (
w  -  0 ) )  < inf ( {
x ,  1 } ,  RR ,  <  )  <-> 
( ( abs `  w
)  <  x  /\  ( abs `  w )  <  1 ) ) )
25 eqid 2170 . . . . . . . . . . . . 13  |-  ( z  e.  { u  e.  CC  |  u #  0 }  |->  ( ( ( exp `  z )  -  1 )  / 
z ) )  =  ( z  e.  {
u  e.  CC  |  u #  0 }  |->  ( ( ( exp `  z
)  -  1 )  /  z ) )
26 fveq2 5494 . . . . . . . . . . . . . . 15  |-  ( z  =  w  ->  ( exp `  z )  =  ( exp `  w
) )
2726oveq1d 5866 . . . . . . . . . . . . . 14  |-  ( z  =  w  ->  (
( exp `  z
)  -  1 )  =  ( ( exp `  w )  -  1 ) )
28 id 19 . . . . . . . . . . . . . 14  |-  ( z  =  w  ->  z  =  w )
2927, 28oveq12d 5869 . . . . . . . . . . . . 13  |-  ( z  =  w  ->  (
( ( exp `  z
)  -  1 )  /  z )  =  ( ( ( exp `  w )  -  1 )  /  w ) )
30 simplr 525 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w #  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w
)  <  1 ) )  ->  ( w  e.  CC  /\  w #  0 ) )
3130, 13sylibr 133 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w #  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w
)  <  1 ) )  ->  w  e.  { u  e.  CC  |  u #  0 } )
32 efcl 11620 . . . . . . . . . . . . . . . 16  |-  ( w  e.  CC  ->  ( exp `  w )  e.  CC )
33 peano2cnm 8178 . . . . . . . . . . . . . . . 16  |-  ( ( exp `  w )  e.  CC  ->  (
( exp `  w
)  -  1 )  e.  CC )
3414, 32, 333syl 17 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  (
w  e.  CC  /\  w #  0 ) )  -> 
( ( exp `  w
)  -  1 )  e.  CC )
35 simprr 527 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  (
w  e.  CC  /\  w #  0 ) )  ->  w #  0 )
3634, 14, 35divclapd 8700 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  (
w  e.  CC  /\  w #  0 ) )  -> 
( ( ( exp `  w )  -  1 )  /  w )  e.  CC )
3736adantr 274 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w #  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w
)  <  1 ) )  ->  ( (
( exp `  w
)  -  1 )  /  w )  e.  CC )
3825, 29, 31, 37fvmptd3 5587 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w #  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w
)  <  1 ) )  ->  ( (
z  e.  { u  e.  CC  |  u #  0 }  |->  ( ( ( exp `  z )  -  1 )  / 
z ) ) `  w )  =  ( ( ( exp `  w
)  -  1 )  /  w ) )
3938fvoveq1d 5873 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w #  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w
)  <  1 ) )  ->  ( abs `  ( ( ( z  e.  { u  e.  CC  |  u #  0 }  |->  ( ( ( exp `  z )  -  1 )  / 
z ) ) `  w )  -  1 ) )  =  ( abs `  ( ( ( ( exp `  w
)  -  1 )  /  w )  - 
1 ) ) )
40 1cnd 7929 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w #  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w
)  <  1 ) )  ->  1  e.  CC )
4137, 40subcld 8223 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w #  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w
)  <  1 ) )  ->  ( (
( ( exp `  w
)  -  1 )  /  w )  - 
1 )  e.  CC )
4241abscld 11138 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w #  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w
)  <  1 ) )  ->  ( abs `  ( ( ( ( exp `  w )  -  1 )  /  w )  -  1 ) )  e.  RR )
43 simplrl 530 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w #  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w
)  <  1 ) )  ->  w  e.  CC )
4443abscld 11138 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w #  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w
)  <  1 ) )  ->  ( abs `  w )  e.  RR )
45 simpll 524 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w #  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w
)  <  1 ) )  ->  x  e.  RR+ )
4645rpred 9646 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w #  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w
)  <  1 ) )  ->  x  e.  RR )
47 abscl 11008 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  CC  ->  ( abs `  w )  e.  RR )
4847ad2antrr 485 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( abs `  w
)  e.  RR )
4932ad2antrr 485 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( exp `  w
)  e.  CC )
50 subcl 8111 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( exp `  w
)  e.  CC  /\  1  e.  CC )  ->  ( ( exp `  w
)  -  1 )  e.  CC )
5149, 8, 50sylancl 411 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( ( exp `  w
)  -  1 )  e.  CC )
52 simpll 524 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  ->  w  e.  CC )
53 simplr 525 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  ->  w #  0 )
5451, 52, 53divclapd 8700 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( ( ( exp `  w )  -  1 )  /  w )  e.  CC )
55 1cnd 7929 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
1  e.  CC )
5654, 55subcld 8223 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( ( ( ( exp `  w )  -  1 )  /  w )  -  1 )  e.  CC )
5756abscld 11138 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( abs `  (
( ( ( exp `  w )  -  1 )  /  w )  -  1 ) )  e.  RR )
5848, 57remulcld 7943 . . . . . . . . . . . . . . . 16  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( ( abs `  w
)  x.  ( abs `  ( ( ( ( exp `  w )  -  1 )  /  w )  -  1 ) ) )  e.  RR )
5948resqcld 10628 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( ( abs `  w
) ^ 2 )  e.  RR )
60 3re 8945 . . . . . . . . . . . . . . . . . 18  |-  3  e.  RR
61 4nn 9034 . . . . . . . . . . . . . . . . . 18  |-  4  e.  NN
62 nndivre 8907 . . . . . . . . . . . . . . . . . 18  |-  ( ( 3  e.  RR  /\  4  e.  NN )  ->  ( 3  /  4
)  e.  RR )
6360, 61, 62mp2an 424 . . . . . . . . . . . . . . . . 17  |-  ( 3  /  4 )  e.  RR
64 remulcl 7895 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( abs `  w
) ^ 2 )  e.  RR  /\  (
3  /  4 )  e.  RR )  -> 
( ( ( abs `  w ) ^ 2 )  x.  ( 3  /  4 ) )  e.  RR )
6559, 63, 64sylancl 411 . . . . . . . . . . . . . . . 16  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( ( ( abs `  w ) ^ 2 )  x.  ( 3  /  4 ) )  e.  RR )
6651, 52subcld 8223 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( ( ( exp `  w )  -  1 )  -  w )  e.  CC )
6766, 52, 53divcanap2d 8702 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( w  x.  (
( ( ( exp `  w )  -  1 )  -  w )  /  w ) )  =  ( ( ( exp `  w )  -  1 )  -  w ) )
6851, 52, 52, 53divsubdirapd 8740 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( ( ( ( exp `  w )  -  1 )  -  w )  /  w
)  =  ( ( ( ( exp `  w
)  -  1 )  /  w )  -  ( w  /  w
) ) )
6952, 53dividapd 8696 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( w  /  w
)  =  1 )
7069oveq2d 5867 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( ( ( ( exp `  w )  -  1 )  /  w )  -  (
w  /  w ) )  =  ( ( ( ( exp `  w
)  -  1 )  /  w )  - 
1 ) )
7168, 70eqtrd 2203 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( ( ( ( exp `  w )  -  1 )  -  w )  /  w
)  =  ( ( ( ( exp `  w
)  -  1 )  /  w )  - 
1 ) )
7271oveq2d 5867 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( w  x.  (
( ( ( exp `  w )  -  1 )  -  w )  /  w ) )  =  ( w  x.  ( ( ( ( exp `  w )  -  1 )  /  w )  -  1 ) ) )
7349, 55, 52subsub4d 8254 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( ( ( exp `  w )  -  1 )  -  w )  =  ( ( exp `  w )  -  (
1  +  w ) ) )
74 addcl 7892 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 1  e.  CC  /\  w  e.  CC )  ->  ( 1  +  w
)  e.  CC )
758, 52, 74sylancr 412 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( 1  +  w
)  e.  CC )
76 2nn0 9145 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  2  e.  NN0
77 eqid 2170 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( n  e.  NN0  |->  ( ( w ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( w ^ n )  / 
( ! `  n
) ) )
7877eftlcl 11644 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( w  e.  CC  /\  2  e.  NN0 )  ->  sum_ k  e.  ( ZZ>= ` 
2 ) ( ( n  e.  NN0  |->  ( ( w ^ n )  /  ( ! `  n ) ) ) `
 k )  e.  CC )
7952, 76, 78sylancl 411 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  ->  sum_ k  e.  ( ZZ>= ` 
2 ) ( ( n  e.  NN0  |->  ( ( w ^ n )  /  ( ! `  n ) ) ) `
 k )  e.  CC )
80 df-2 8930 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  2  =  ( 1  +  1 )
81 1nn0 9144 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  1  e.  NN0
82 1e0p1 9377 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  1  =  ( 0  +  1 )
83 0nn0 9143 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  0  e.  NN0
84 0cnd 7906 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
0  e.  CC )
8577efval2 11621 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( w  e.  CC  ->  ( exp `  w )  = 
sum_ k  e.  NN0  ( ( n  e. 
NN0  |->  ( ( w ^ n )  / 
( ! `  n
) ) ) `  k ) )
8685ad2antrr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( exp `  w
)  =  sum_ k  e.  NN0  ( ( n  e.  NN0  |->  ( ( w ^ n )  /  ( ! `  n ) ) ) `
 k ) )
87 nn0uz 9514 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  NN0  =  ( ZZ>= `  0 )
8887sumeq1i 11319 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  sum_ k  e.  NN0  ( ( n  e.  NN0  |->  ( ( w ^ n )  /  ( ! `  n ) ) ) `
 k )  = 
sum_ k  e.  (
ZZ>= `  0 ) ( ( n  e.  NN0  |->  ( ( w ^
n )  /  ( ! `  n )
) ) `  k
)
8986, 88eqtr2di 2220 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  ->  sum_ k  e.  ( ZZ>= ` 
0 ) ( ( n  e.  NN0  |->  ( ( w ^ n )  /  ( ! `  n ) ) ) `
 k )  =  ( exp `  w
) )
9089oveq2d 5867 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( 0  +  sum_ k  e.  ( ZZ>= ` 
0 ) ( ( n  e.  NN0  |->  ( ( w ^ n )  /  ( ! `  n ) ) ) `
 k ) )  =  ( 0  +  ( exp `  w
) ) )
9149addid2d 8062 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( 0  +  ( exp `  w ) )  =  ( exp `  w ) )
9290, 91eqtr2d 2204 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( exp `  w
)  =  ( 0  +  sum_ k  e.  (
ZZ>= `  0 ) ( ( n  e.  NN0  |->  ( ( w ^
n )  /  ( ! `  n )
) ) `  k
) ) )
93 eft0val 11649 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( w  e.  CC  ->  (
( w ^ 0 )  /  ( ! `
 0 ) )  =  1 )
9493ad2antrr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( ( w ^
0 )  /  ( ! `  0 )
)  =  1 )
9594oveq2d 5867 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( 0  +  ( ( w ^ 0 )  /  ( ! `
 0 ) ) )  =  ( 0  +  1 ) )
9695, 82eqtr4di 2221 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( 0  +  ( ( w ^ 0 )  /  ( ! `
 0 ) ) )  =  1 )
9777, 82, 83, 52, 84, 92, 96efsep 11647 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( exp `  w
)  =  ( 1  +  sum_ k  e.  (
ZZ>= `  1 ) ( ( n  e.  NN0  |->  ( ( w ^
n )  /  ( ! `  n )
) ) `  k
) ) )
98 exp1 10475 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( w  e.  CC  ->  (
w ^ 1 )  =  w )
9998ad2antrr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( w ^ 1 )  =  w )
10099oveq1d 5866 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( ( w ^
1 )  /  ( ! `  1 )
)  =  ( w  /  ( ! ` 
1 ) ) )
101 fac1 10656 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ! `
 1 )  =  1
102101oveq2i 5862 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( w  /  ( ! ` 
1 ) )  =  ( w  /  1
)
103100, 102eqtrdi 2219 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( ( w ^
1 )  /  ( ! `  1 )
)  =  ( w  /  1 ) )
104 div1 8613 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( w  e.  CC  ->  (
w  /  1 )  =  w )
105104ad2antrr 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( w  /  1
)  =  w )
106103, 105eqtrd 2203 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( ( w ^
1 )  /  ( ! `  1 )
)  =  w )
107106oveq2d 5867 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( 1  +  ( ( w ^ 1 )  /  ( ! `
 1 ) ) )  =  ( 1  +  w ) )
10877, 80, 81, 52, 55, 97, 107efsep 11647 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( exp `  w
)  =  ( ( 1  +  w )  +  sum_ k  e.  (
ZZ>= `  2 ) ( ( n  e.  NN0  |->  ( ( w ^
n )  /  ( ! `  n )
) ) `  k
) ) )
10975, 79, 108mvrladdd 8279 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( ( exp `  w
)  -  ( 1  +  w ) )  =  sum_ k  e.  (
ZZ>= `  2 ) ( ( n  e.  NN0  |->  ( ( w ^
n )  /  ( ! `  n )
) ) `  k
) )
11073, 109eqtrd 2203 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( ( ( exp `  w )  -  1 )  -  w )  =  sum_ k  e.  (
ZZ>= `  2 ) ( ( n  e.  NN0  |->  ( ( w ^
n )  /  ( ! `  n )
) ) `  k
) )
11167, 72, 1103eqtr3d 2211 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( w  x.  (
( ( ( exp `  w )  -  1 )  /  w )  -  1 ) )  =  sum_ k  e.  (
ZZ>= `  2 ) ( ( n  e.  NN0  |->  ( ( w ^
n )  /  ( ! `  n )
) ) `  k
) )
112111fveq2d 5498 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( abs `  (
w  x.  ( ( ( ( exp `  w
)  -  1 )  /  w )  - 
1 ) ) )  =  ( abs `  sum_ k  e.  ( ZZ>= ` 
2 ) ( ( n  e.  NN0  |->  ( ( w ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )
11352, 56absmuld 11151 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( abs `  (
w  x.  ( ( ( ( exp `  w
)  -  1 )  /  w )  - 
1 ) ) )  =  ( ( abs `  w )  x.  ( abs `  ( ( ( ( exp `  w
)  -  1 )  /  w )  - 
1 ) ) ) )
114112, 113eqtr3d 2205 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( abs `  sum_ k  e.  ( ZZ>= ` 
2 ) ( ( n  e.  NN0  |->  ( ( w ^ n )  /  ( ! `  n ) ) ) `
 k ) )  =  ( ( abs `  w )  x.  ( abs `  ( ( ( ( exp `  w
)  -  1 )  /  w )  - 
1 ) ) ) )
115 eqid 2170 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  NN0  |->  ( ( ( abs `  w
) ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( ( abs `  w ) ^ n )  / 
( ! `  n
) ) )
116 eqid 2170 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  NN0  |->  ( ( ( ( abs `  w
) ^ 2 )  /  ( ! ` 
2 ) )  x.  ( ( 1  / 
( 2  +  1 ) ) ^ n
) ) )  =  ( n  e.  NN0  |->  ( ( ( ( abs `  w ) ^ 2 )  / 
( ! `  2
) )  x.  (
( 1  /  (
2  +  1 ) ) ^ n ) ) )
117 2nn 9032 . . . . . . . . . . . . . . . . . . . 20  |-  2  e.  NN
118117a1i 9 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
2  e.  NN )
119 1red 7928 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
1  e.  RR )
120 simpr 109 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( abs `  w
)  <  1 )
12148, 119, 120ltled 8031 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( abs `  w
)  <_  1 )
12277, 115, 116, 118, 52, 121eftlub 11646 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( abs `  sum_ k  e.  ( ZZ>= ` 
2 ) ( ( n  e.  NN0  |->  ( ( w ^ n )  /  ( ! `  n ) ) ) `
 k ) )  <_  ( ( ( abs `  w ) ^ 2 )  x.  ( ( 2  +  1 )  /  (
( ! `  2
)  x.  2 ) ) ) )
123114, 122eqbrtrrd 4011 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( ( abs `  w
)  x.  ( abs `  ( ( ( ( exp `  w )  -  1 )  /  w )  -  1 ) ) )  <_ 
( ( ( abs `  w ) ^ 2 )  x.  ( ( 2  +  1 )  /  ( ( ! `
 2 )  x.  2 ) ) ) )
124 df-3 8931 . . . . . . . . . . . . . . . . . . 19  |-  3  =  ( 2  +  1 )
125 fac2 10658 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ! `
 2 )  =  2
126125oveq1i 5861 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ! `  2 )  x.  2 )  =  ( 2  x.  2 )
127 2t2e4 9025 . . . . . . . . . . . . . . . . . . . 20  |-  ( 2  x.  2 )  =  4
128126, 127eqtr2i 2192 . . . . . . . . . . . . . . . . . . 19  |-  4  =  ( ( ! `
 2 )  x.  2 )
129124, 128oveq12i 5863 . . . . . . . . . . . . . . . . . 18  |-  ( 3  /  4 )  =  ( ( 2  +  1 )  /  (
( ! `  2
)  x.  2 ) )
130129oveq2i 5862 . . . . . . . . . . . . . . . . 17  |-  ( ( ( abs `  w
) ^ 2 )  x.  ( 3  / 
4 ) )  =  ( ( ( abs `  w ) ^ 2 )  x.  ( ( 2  +  1 )  /  ( ( ! `
 2 )  x.  2 ) ) )
131123, 130breqtrrdi 4029 . . . . . . . . . . . . . . . 16  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( ( abs `  w
)  x.  ( abs `  ( ( ( ( exp `  w )  -  1 )  /  w )  -  1 ) ) )  <_ 
( ( ( abs `  w ) ^ 2 )  x.  ( 3  /  4 ) ) )
13263a1i 9 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( 3  /  4
)  e.  RR )
13348sqge0d 10629 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
0  <_  ( ( abs `  w ) ^
2 ) )
134 1re 7912 . . . . . . . . . . . . . . . . . . . 20  |-  1  e.  RR
135 3lt4 9043 . . . . . . . . . . . . . . . . . . . . . 22  |-  3  <  4
136 4cn 8949 . . . . . . . . . . . . . . . . . . . . . . 23  |-  4  e.  CC
137136mulid1i 7915 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 4  x.  1 )  =  4
138135, 137breqtrri 4014 . . . . . . . . . . . . . . . . . . . . 21  |-  3  <  ( 4  x.  1 )
139 4re 8948 . . . . . . . . . . . . . . . . . . . . . . 23  |-  4  e.  RR
140 4pos 8968 . . . . . . . . . . . . . . . . . . . . . . 23  |-  0  <  4
141139, 140pm3.2i 270 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 4  e.  RR  /\  0  <  4 )
142 ltdivmul 8785 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 3  e.  RR  /\  1  e.  RR  /\  (
4  e.  RR  /\  0  <  4 ) )  ->  ( ( 3  /  4 )  <  1  <->  3  <  (
4  x.  1 ) ) )
14360, 134, 141, 142mp3an 1332 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 3  /  4 )  <  1  <->  3  <  ( 4  x.  1 ) )
144138, 143mpbir 145 . . . . . . . . . . . . . . . . . . . 20  |-  ( 3  /  4 )  <  1
14563, 134, 144ltleii 8015 . . . . . . . . . . . . . . . . . . 19  |-  ( 3  /  4 )  <_ 
1
146145a1i 9 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( 3  /  4
)  <_  1 )
147132, 119, 59, 133, 146lemul2ad 8849 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( ( ( abs `  w ) ^ 2 )  x.  ( 3  /  4 ) )  <_  ( ( ( abs `  w ) ^ 2 )  x.  1 ) )
14848recnd 7941 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( abs `  w
)  e.  CC )
149148sqcld 10600 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( ( abs `  w
) ^ 2 )  e.  CC )
150149mulid1d 7930 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( ( ( abs `  w ) ^ 2 )  x.  1 )  =  ( ( abs `  w ) ^ 2 ) )
151147, 150breqtrd 4013 . . . . . . . . . . . . . . . 16  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( ( ( abs `  w ) ^ 2 )  x.  ( 3  /  4 ) )  <_  ( ( abs `  w ) ^ 2 ) )
15258, 65, 59, 131, 151letrd 8036 . . . . . . . . . . . . . . 15  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( ( abs `  w
)  x.  ( abs `  ( ( ( ( exp `  w )  -  1 )  /  w )  -  1 ) ) )  <_ 
( ( abs `  w
) ^ 2 ) )
153148sqvald 10599 . . . . . . . . . . . . . . 15  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( ( abs `  w
) ^ 2 )  =  ( ( abs `  w )  x.  ( abs `  w ) ) )
154152, 153breqtrd 4013 . . . . . . . . . . . . . 14  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( ( abs `  w
)  x.  ( abs `  ( ( ( ( exp `  w )  -  1 )  /  w )  -  1 ) ) )  <_ 
( ( abs `  w
)  x.  ( abs `  w ) ) )
155 absgt0ap 11056 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  CC  ->  (
w #  0  <->  0  <  ( abs `  w ) ) )
156155ad2antrr 485 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( w #  0  <->  0  <  ( abs `  w
) ) )
15753, 156mpbid 146 . . . . . . . . . . . . . . . 16  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
0  <  ( abs `  w ) )
15848, 157elrpd 9643 . . . . . . . . . . . . . . 15  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( abs `  w
)  e.  RR+ )
15957, 48, 158lemul2d 9691 . . . . . . . . . . . . . 14  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( ( abs `  (
( ( ( exp `  w )  -  1 )  /  w )  -  1 ) )  <_  ( abs `  w
)  <->  ( ( abs `  w )  x.  ( abs `  ( ( ( ( exp `  w
)  -  1 )  /  w )  - 
1 ) ) )  <_  ( ( abs `  w )  x.  ( abs `  w ) ) ) )
160154, 159mpbird 166 . . . . . . . . . . . . 13  |-  ( ( ( w  e.  CC  /\  w #  0 )  /\  ( abs `  w )  <  1 )  -> 
( abs `  (
( ( ( exp `  w )  -  1 )  /  w )  -  1 ) )  <_  ( abs `  w
) )
161160ad2ant2l 505 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w #  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w
)  <  1 ) )  ->  ( abs `  ( ( ( ( exp `  w )  -  1 )  /  w )  -  1 ) )  <_  ( abs `  w ) )
162 simprl 526 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w #  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w
)  <  1 ) )  ->  ( abs `  w )  <  x
)
16342, 44, 46, 161, 162lelttrd 8037 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w #  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w
)  <  1 ) )  ->  ( abs `  ( ( ( ( exp `  w )  -  1 )  /  w )  -  1 ) )  <  x
)
16439, 163eqbrtrd 4009 . . . . . . . . . 10  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w #  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w
)  <  1 ) )  ->  ( abs `  ( ( ( z  e.  { u  e.  CC  |  u #  0 }  |->  ( ( ( exp `  z )  -  1 )  / 
z ) ) `  w )  -  1 ) )  <  x
)
165164ex 114 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  (
w  e.  CC  /\  w #  0 ) )  -> 
( ( ( abs `  w )  <  x  /\  ( abs `  w
)  <  1 )  ->  ( abs `  (
( ( z  e. 
{ u  e.  CC  |  u #  0 }  |->  ( ( ( exp `  z )  -  1 )  /  z ) ) `  w )  -  1 ) )  <  x ) )
16624, 165sylbid 149 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  (
w  e.  CC  /\  w #  0 ) )  -> 
( ( abs `  (
w  -  0 ) )  < inf ( {
x ,  1 } ,  RR ,  <  )  ->  ( abs `  (
( ( z  e. 
{ u  e.  CC  |  u #  0 }  |->  ( ( ( exp `  z )  -  1 )  /  z ) ) `  w )  -  1 ) )  <  x ) )
167166adantld 276 . . . . . . 7  |-  ( ( x  e.  RR+  /\  (
w  e.  CC  /\  w #  0 ) )  -> 
( ( w #  0  /\  ( abs `  (
w  -  0 ) )  < inf ( {
x ,  1 } ,  RR ,  <  ) )  ->  ( abs `  ( ( ( z  e.  { u  e.  CC  |  u #  0 }  |->  ( ( ( exp `  z )  -  1 )  / 
z ) ) `  w )  -  1 ) )  <  x
) )
16813, 167sylan2b 285 . . . . . 6  |-  ( ( x  e.  RR+  /\  w  e.  { u  e.  CC  |  u #  0 }
)  ->  ( (
w #  0  /\  ( abs `  ( w  - 
0 ) )  < inf ( { x ,  1 } ,  RR ,  <  ) )  ->  ( abs `  ( ( ( z  e.  { u  e.  CC  |  u #  0 }  |->  ( ( ( exp `  z )  -  1 )  / 
z ) ) `  w )  -  1 ) )  <  x
) )
169168ralrimiva 2543 . . . . 5  |-  ( x  e.  RR+  ->  A. w  e.  { u  e.  CC  |  u #  0 } 
( ( w #  0  /\  ( abs `  (
w  -  0 ) )  < inf ( {
x ,  1 } ,  RR ,  <  ) )  ->  ( abs `  ( ( ( z  e.  { u  e.  CC  |  u #  0 }  |->  ( ( ( exp `  z )  -  1 )  / 
z ) ) `  w )  -  1 ) )  <  x
) )
170 brimralrspcev 4046 . . . . 5  |-  ( (inf ( { x ,  1 } ,  RR ,  <  )  e.  RR+  /\ 
A. w  e.  {
u  e.  CC  |  u #  0 }  ( ( w #  0  /\  ( abs `  ( w  - 
0 ) )  < inf ( { x ,  1 } ,  RR ,  <  ) )  ->  ( abs `  ( ( ( z  e.  { u  e.  CC  |  u #  0 }  |->  ( ( ( exp `  z )  -  1 )  / 
z ) ) `  w )  -  1 ) )  <  x
) )  ->  E. y  e.  RR+  A. w  e. 
{ u  e.  CC  |  u #  0 } 
( ( w #  0  /\  ( abs `  (
w  -  0 ) )  <  y )  ->  ( abs `  (
( ( z  e. 
{ u  e.  CC  |  u #  0 }  |->  ( ( ( exp `  z )  -  1 )  /  z ) ) `  w )  -  1 ) )  <  x ) )
17111, 169, 170syl2anc 409 . . . 4  |-  ( x  e.  RR+  ->  E. y  e.  RR+  A. w  e. 
{ u  e.  CC  |  u #  0 } 
( ( w #  0  /\  ( abs `  (
w  -  0 ) )  <  y )  ->  ( abs `  (
( ( z  e. 
{ u  e.  CC  |  u #  0 }  |->  ( ( ( exp `  z )  -  1 )  /  z ) ) `  w )  -  1 ) )  <  x ) )
172171rgen 2523 . . 3  |-  A. x  e.  RR+  E. y  e.  RR+  A. w  e.  {
u  e.  CC  |  u #  0 }  ( ( w #  0  /\  ( abs `  ( w  - 
0 ) )  < 
y )  ->  ( abs `  ( ( ( z  e.  { u  e.  CC  |  u #  0 }  |->  ( ( ( exp `  z )  -  1 )  / 
z ) ) `  w )  -  1 ) )  <  x
)
173 elrabi 2883 . . . . . . . . . 10  |-  ( z  e.  { u  e.  CC  |  u #  0 }  ->  z  e.  CC )
174 efcl 11620 . . . . . . . . . 10  |-  ( z  e.  CC  ->  ( exp `  z )  e.  CC )
175173, 174syl 14 . . . . . . . . 9  |-  ( z  e.  { u  e.  CC  |  u #  0 }  ->  ( exp `  z )  e.  CC )
176 1cnd 7929 . . . . . . . . 9  |-  ( z  e.  { u  e.  CC  |  u #  0 }  ->  1  e.  CC )
177175, 176subcld 8223 . . . . . . . 8  |-  ( z  e.  { u  e.  CC  |  u #  0 }  ->  ( ( exp `  z )  - 
1 )  e.  CC )
178 breq1 3990 . . . . . . . . . 10  |-  ( u  =  z  ->  (
u #  0  <->  z #  0
) )
179178elrab 2886 . . . . . . . . 9  |-  ( z  e.  { u  e.  CC  |  u #  0 }  <->  ( z  e.  CC  /\  z #  0 ) )
180179simprbi 273 . . . . . . . 8  |-  ( z  e.  { u  e.  CC  |  u #  0 }  ->  z #  0
)
181177, 173, 180divclapd 8700 . . . . . . 7  |-  ( z  e.  { u  e.  CC  |  u #  0 }  ->  ( (
( exp `  z
)  -  1 )  /  z )  e.  CC )
18225, 181fmpti 5646 . . . . . 6  |-  ( z  e.  { u  e.  CC  |  u #  0 }  |->  ( ( ( exp `  z )  -  1 )  / 
z ) ) : { u  e.  CC  |  u #  0 } --> CC
183182a1i 9 . . . . 5  |-  ( T. 
->  ( z  e.  {
u  e.  CC  |  u #  0 }  |->  ( ( ( exp `  z
)  -  1 )  /  z ) ) : { u  e.  CC  |  u #  0 } --> CC )
184 apsscn 8559 . . . . . 6  |-  { u  e.  CC  |  u #  0 }  C_  CC
185184a1i 9 . . . . 5  |-  ( T. 
->  { u  e.  CC  |  u #  0 }  C_  CC )
186 0cnd 7906 . . . . 5  |-  ( T. 
->  0  e.  CC )
187183, 185, 186ellimc3ap 13389 . . . 4  |-  ( T. 
->  ( 1  e.  ( ( z  e.  {
u  e.  CC  |  u #  0 }  |->  ( ( ( exp `  z
)  -  1 )  /  z ) ) lim
CC  0 )  <->  ( 1  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR+  A. w  e. 
{ u  e.  CC  |  u #  0 } 
( ( w #  0  /\  ( abs `  (
w  -  0 ) )  <  y )  ->  ( abs `  (
( ( z  e. 
{ u  e.  CC  |  u #  0 }  |->  ( ( ( exp `  z )  -  1 )  /  z ) ) `  w )  -  1 ) )  <  x ) ) ) )
188187mptru 1357 . . 3  |-  ( 1  e.  ( ( z  e.  { u  e.  CC  |  u #  0 }  |->  ( ( ( exp `  z )  -  1 )  / 
z ) ) lim CC  0 )  <->  ( 1  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR+  A. w  e. 
{ u  e.  CC  |  u #  0 } 
( ( w #  0  /\  ( abs `  (
w  -  0 ) )  <  y )  ->  ( abs `  (
( ( z  e. 
{ u  e.  CC  |  u #  0 }  |->  ( ( ( exp `  z )  -  1 )  /  z ) ) `  w )  -  1 ) )  <  x ) ) )
1898, 172, 188mpbir2an 937 . 2  |-  1  e.  ( ( z  e. 
{ u  e.  CC  |  u #  0 }  |->  ( ( ( exp `  z )  -  1 )  /  z ) ) lim CC  0 )
1902cntoptopon 13291 . . . . 5  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  (TopOn `  CC )
191190toponrestid 12778 . . . 4  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( (
MetOpen `  ( abs  o.  -  ) )t  CC )
192173subid1d 8212 . . . . . . 7  |-  ( z  e.  { u  e.  CC  |  u #  0 }  ->  ( z  -  0 )  =  z )
193192oveq2d 5867 . . . . . 6  |-  ( z  e.  { u  e.  CC  |  u #  0 }  ->  ( (
( exp `  z
)  -  ( exp `  0 ) )  /  ( z  - 
0 ) )  =  ( ( ( exp `  z )  -  ( exp `  0 ) )  /  z ) )
194 ef0 11628 . . . . . . . 8  |-  ( exp `  0 )  =  1
195194oveq2i 5862 . . . . . . 7  |-  ( ( exp `  z )  -  ( exp `  0
) )  =  ( ( exp `  z
)  -  1 )
196195oveq1i 5861 . . . . . 6  |-  ( ( ( exp `  z
)  -  ( exp `  0 ) )  /  z )  =  ( ( ( exp `  z )  -  1 )  /  z )
197193, 196eqtr2di 2220 . . . . 5  |-  ( z  e.  { u  e.  CC  |  u #  0 }  ->  ( (
( exp `  z
)  -  1 )  /  z )  =  ( ( ( exp `  z )  -  ( exp `  0 ) )  /  ( z  - 
0 ) ) )
198197mpteq2ia 4073 . . . 4  |-  ( z  e.  { u  e.  CC  |  u #  0 }  |->  ( ( ( exp `  z )  -  1 )  / 
z ) )  =  ( z  e.  {
u  e.  CC  |  u #  0 }  |->  ( ( ( exp `  z
)  -  ( exp `  0 ) )  /  ( z  - 
0 ) ) )
199 ssidd 3168 . . . 4  |-  ( T. 
->  CC  C_  CC )
200 eff 11619 . . . . 5  |-  exp : CC
--> CC
201200a1i 9 . . . 4  |-  ( T. 
->  exp : CC --> CC )
202191, 2, 198, 199, 201, 199eldvap 13410 . . 3  |-  ( T. 
->  ( 0 ( CC 
_D  exp ) 1  <->  (
0  e.  ( ( int `  ( MetOpen `  ( abs  o.  -  )
) ) `  CC )  /\  1  e.  ( ( z  e.  {
u  e.  CC  |  u #  0 }  |->  ( ( ( exp `  z
)  -  1 )  /  z ) ) lim
CC  0 ) ) ) )
203202mptru 1357 . 2  |-  ( 0 ( CC  _D  exp ) 1  <->  ( 0  e.  ( ( int `  ( MetOpen `  ( abs  o. 
-  ) ) ) `
 CC )  /\  1  e.  ( (
z  e.  { u  e.  CC  |  u #  0 }  |->  ( ( ( exp `  z )  -  1 )  / 
z ) ) lim CC  0 ) ) )
2047, 189, 203mpbir2an 937 1  |-  0
( CC  _D  exp ) 1
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   T. wtru 1349    e. wcel 2141   A.wral 2448   E.wrex 2449   {crab 2452    C_ wss 3121   {cpr 3582   class class class wbr 3987    |-> cmpt 4048    o. ccom 4613   -->wf 5192   ` cfv 5196  (class class class)co 5851  infcinf 6958   CCcc 7765   RRcr 7766   0cc0 7767   1c1 7768    + caddc 7770    x. cmul 7772    < clt 7947    <_ cle 7948    - cmin 8083   # cap 8493    / cdiv 8582   NNcn 8871   2c2 8922   3c3 8923   4c4 8924   NN0cn0 9128   ZZ>=cuz 9480   RR+crp 9603   ^cexp 10468   !cfa 10652   abscabs 10954   sum_csu 11309   expce 11598   MetOpencmopn 12744   Topctop 12754   intcnt 12852   lim CC climc 13382    _D cdv 13383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7858  ax-resscn 7859  ax-1cn 7860  ax-1re 7861  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-mulrcl 7866  ax-addcom 7867  ax-mulcom 7868  ax-addass 7869  ax-mulass 7870  ax-distr 7871  ax-i2m1 7872  ax-0lt1 7873  ax-1rid 7874  ax-0id 7875  ax-rnegex 7876  ax-precex 7877  ax-cnre 7878  ax-pre-ltirr 7879  ax-pre-ltwlin 7880  ax-pre-lttrn 7881  ax-pre-apti 7882  ax-pre-ltadd 7883  ax-pre-mulgt0 7884  ax-pre-mulext 7885  ax-arch 7886  ax-caucvg 7887
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-irdg 6347  df-frec 6368  df-1o 6393  df-oadd 6397  df-er 6511  df-map 6626  df-pm 6627  df-en 6717  df-dom 6718  df-fin 6719  df-sup 6959  df-inf 6960  df-pnf 7949  df-mnf 7950  df-xr 7951  df-ltxr 7952  df-le 7953  df-sub 8085  df-neg 8086  df-reap 8487  df-ap 8494  df-div 8583  df-inn 8872  df-2 8930  df-3 8931  df-4 8932  df-n0 9129  df-z 9206  df-uz 9481  df-q 9572  df-rp 9604  df-xneg 9722  df-xadd 9723  df-ico 9844  df-fz 9959  df-fzo 10092  df-seqfrec 10395  df-exp 10469  df-fac 10653  df-ihash 10703  df-shft 10772  df-cj 10799  df-re 10800  df-im 10801  df-rsqrt 10955  df-abs 10956  df-clim 11235  df-sumdc 11310  df-ef 11604  df-rest 12574  df-topgen 12593  df-psmet 12746  df-xmet 12747  df-met 12748  df-bl 12749  df-mopn 12750  df-top 12755  df-topon 12768  df-bases 12800  df-ntr 12855  df-limced 13384  df-dvap 13385
This theorem is referenced by:  dvef  13447
  Copyright terms: Public domain W3C validator