ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brimralrspcev GIF version

Theorem brimralrspcev 4092
Description: Restricted existential specialization with a restricted universal quantifier over an implication with a relation in the antecedent, closed form. (Contributed by AV, 20-Aug-2022.)
Assertion
Ref Expression
brimralrspcev ((𝐵𝑋 ∧ ∀𝑦𝑌 ((𝜑𝐴𝑅𝐵) → 𝜓)) → ∃𝑥𝑋𝑦𝑌 ((𝜑𝐴𝑅𝑥) → 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵,𝑦   𝑥,𝑅   𝑥,𝑋   𝑥,𝑌   𝜑,𝑥   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑦)   𝐴(𝑦)   𝑅(𝑦)   𝑋(𝑦)   𝑌(𝑦)

Proof of Theorem brimralrspcev
StepHypRef Expression
1 breq2 4037 . . 3 (𝑥 = 𝐵 → (𝐴𝑅𝑥𝐴𝑅𝐵))
21anbi2d 464 . 2 (𝑥 = 𝐵 → ((𝜑𝐴𝑅𝑥) ↔ (𝜑𝐴𝑅𝐵)))
32rspceaimv 2876 1 ((𝐵𝑋 ∧ ∀𝑦𝑌 ((𝜑𝐴𝑅𝐵) → 𝜓)) → ∃𝑥𝑋𝑦𝑌 ((𝜑𝐴𝑅𝑥) → 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  wrex 2476   class class class wbr 4033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034
This theorem is referenced by:  dveflem  14962
  Copyright terms: Public domain W3C validator