ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brimralrspcev GIF version

Theorem brimralrspcev 3987
Description: Restricted existential specialization with a restricted universal quantifier over an implication with a relation in the antecedent, closed form. (Contributed by AV, 20-Aug-2022.)
Assertion
Ref Expression
brimralrspcev ((𝐵𝑋 ∧ ∀𝑦𝑌 ((𝜑𝐴𝑅𝐵) → 𝜓)) → ∃𝑥𝑋𝑦𝑌 ((𝜑𝐴𝑅𝑥) → 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵,𝑦   𝑥,𝑅   𝑥,𝑋   𝑥,𝑌   𝜑,𝑥   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑦)   𝐴(𝑦)   𝑅(𝑦)   𝑋(𝑦)   𝑌(𝑦)

Proof of Theorem brimralrspcev
StepHypRef Expression
1 breq2 3933 . . 3 (𝑥 = 𝐵 → (𝐴𝑅𝑥𝐴𝑅𝐵))
21anbi2d 459 . 2 (𝑥 = 𝐵 → ((𝜑𝐴𝑅𝑥) ↔ (𝜑𝐴𝑅𝐵)))
32rspceaimv 2797 1 ((𝐵𝑋 ∧ ∀𝑦𝑌 ((𝜑𝐴𝑅𝐵) → 𝜓)) → ∃𝑥𝑋𝑦𝑌 ((𝜑𝐴𝑅𝑥) → 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  wral 2416  wrex 2417   class class class wbr 3929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930
This theorem is referenced by:  dveflem  12870
  Copyright terms: Public domain W3C validator