![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > brimralrspcev | GIF version |
Description: Restricted existential specialization with a restricted universal quantifier over an implication with a relation in the antecedent, closed form. (Contributed by AV, 20-Aug-2022.) |
Ref | Expression |
---|---|
brimralrspcev | ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 ((𝜑 ∧ 𝐴𝑅𝐵) → 𝜓)) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝜑 ∧ 𝐴𝑅𝑥) → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 4022 | . . 3 ⊢ (𝑥 = 𝐵 → (𝐴𝑅𝑥 ↔ 𝐴𝑅𝐵)) | |
2 | 1 | anbi2d 464 | . 2 ⊢ (𝑥 = 𝐵 → ((𝜑 ∧ 𝐴𝑅𝑥) ↔ (𝜑 ∧ 𝐴𝑅𝐵))) |
3 | 2 | rspceaimv 2864 | 1 ⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 ((𝜑 ∧ 𝐴𝑅𝐵) → 𝜓)) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝜑 ∧ 𝐴𝑅𝑥) → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 ∀wral 2468 ∃wrex 2469 class class class wbr 4018 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-un 3148 df-sn 3613 df-pr 3614 df-op 3616 df-br 4019 |
This theorem is referenced by: dveflem 14664 |
Copyright terms: Public domain | W3C validator |