ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbviotavw GIF version

Theorem cbviotavw 5284
Description: Change bound variables in a description binder. Version of cbviotav 5285 with a disjoint variable condition. (Contributed by Andrew Salmon, 1-Aug-2011.) (Revised by GG, 30-Sep-2024.)
Hypothesis
Ref Expression
cbviotavw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbviotavw (℩𝑥𝜑) = (℩𝑦𝜓)
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbviotavw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cbviotavw.1 . . . . . 6 (𝑥 = 𝑦 → (𝜑𝜓))
21cbvabv 2354 . . . . 5 {𝑥𝜑} = {𝑦𝜓}
32eqeq1i 2237 . . . 4 ({𝑥𝜑} = {𝑧} ↔ {𝑦𝜓} = {𝑧})
43abbii 2345 . . 3 {𝑧 ∣ {𝑥𝜑} = {𝑧}} = {𝑧 ∣ {𝑦𝜓} = {𝑧}}
54unieqi 3898 . 2 {𝑧 ∣ {𝑥𝜑} = {𝑧}} = {𝑧 ∣ {𝑦𝜓} = {𝑧}}
6 df-iota 5278 . 2 (℩𝑥𝜑) = {𝑧 ∣ {𝑥𝜑} = {𝑧}}
7 df-iota 5278 . 2 (℩𝑦𝜓) = {𝑧 ∣ {𝑦𝜓} = {𝑧}}
85, 6, 73eqtr4i 2260 1 (℩𝑥𝜑) = (℩𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  {cab 2215  {csn 3666   cuni 3888  cio 5276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-uni 3889  df-iota 5278
This theorem is referenced by:  cbvriotavw  5971
  Copyright terms: Public domain W3C validator