ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvoprab12v Unicode version

Theorem cbvoprab12v 6079
Description: Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 8-Oct-2004.)
Hypothesis
Ref Expression
cbvoprab12v.1  |-  ( ( x  =  w  /\  y  =  v )  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
cbvoprab12v  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. <. w ,  v >. ,  z
>.  |  ps }
Distinct variable groups:    x, y, z, w, v    ph, w, v    ps, x, y
Allowed substitution hints:    ph( x, y, z)    ps( z, w, v)

Proof of Theorem cbvoprab12v
StepHypRef Expression
1 nfv 1574 . 2  |-  F/ w ph
2 nfv 1574 . 2  |-  F/ v
ph
3 nfv 1574 . 2  |-  F/ x ps
4 nfv 1574 . 2  |-  F/ y ps
5 cbvoprab12v.1 . 2  |-  ( ( x  =  w  /\  y  =  v )  ->  ( ph  <->  ps )
)
61, 2, 3, 4, 5cbvoprab12 6078 1  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. <. w ,  v >. ,  z
>.  |  ps }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395   {coprab 6002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4146  df-oprab 6005
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator