Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvoprab12v Unicode version

Theorem cbvoprab12v 5846
 Description: Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 8-Oct-2004.)
Hypothesis
Ref Expression
cbvoprab12v.1
Assertion
Ref Expression
cbvoprab12v
Distinct variable groups:   ,,,,   ,,   ,,
Allowed substitution hints:   (,,)   (,,)

Proof of Theorem cbvoprab12v
StepHypRef Expression
1 nfv 1508 . 2
2 nfv 1508 . 2
3 nfv 1508 . 2
4 nfv 1508 . 2
5 cbvoprab12v.1 . 2
61, 2, 3, 4, 5cbvoprab12 5845 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103   wb 104   wceq 1331  coprab 5775 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-opab 3990  df-oprab 5778 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator