ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvoprab12v GIF version

Theorem cbvoprab12v 6079
Description: Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 8-Oct-2004.)
Hypothesis
Ref Expression
cbvoprab12v.1 ((𝑥 = 𝑤𝑦 = 𝑣) → (𝜑𝜓))
Assertion
Ref Expression
cbvoprab12v {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑤, 𝑣⟩, 𝑧⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣   𝜑,𝑤,𝑣   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑧,𝑤,𝑣)

Proof of Theorem cbvoprab12v
StepHypRef Expression
1 nfv 1574 . 2 𝑤𝜑
2 nfv 1574 . 2 𝑣𝜑
3 nfv 1574 . 2 𝑥𝜓
4 nfv 1574 . 2 𝑦𝜓
5 cbvoprab12v.1 . 2 ((𝑥 = 𝑤𝑦 = 𝑣) → (𝜑𝜓))
61, 2, 3, 4, 5cbvoprab12 6078 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑤, 𝑣⟩, 𝑧⟩ ∣ 𝜓}
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  {coprab 6002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4146  df-oprab 6005
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator