ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvoprab12v GIF version

Theorem cbvoprab12v 5928
Description: Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 8-Oct-2004.)
Hypothesis
Ref Expression
cbvoprab12v.1 ((𝑥 = 𝑤𝑦 = 𝑣) → (𝜑𝜓))
Assertion
Ref Expression
cbvoprab12v {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑤, 𝑣⟩, 𝑧⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣   𝜑,𝑤,𝑣   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑧,𝑤,𝑣)

Proof of Theorem cbvoprab12v
StepHypRef Expression
1 nfv 1521 . 2 𝑤𝜑
2 nfv 1521 . 2 𝑣𝜑
3 nfv 1521 . 2 𝑥𝜓
4 nfv 1521 . 2 𝑦𝜓
5 cbvoprab12v.1 . 2 ((𝑥 = 𝑤𝑦 = 𝑣) → (𝜑𝜓))
61, 2, 3, 4, 5cbvoprab12 5927 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑤, 𝑣⟩, 𝑧⟩ ∣ 𝜓}
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  {coprab 5854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-opab 4051  df-oprab 5857
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator