ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvoprab12 Unicode version

Theorem cbvoprab12 5811
Description: Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
cbvoprab12.1  |-  F/ w ph
cbvoprab12.2  |-  F/ v
ph
cbvoprab12.3  |-  F/ x ps
cbvoprab12.4  |-  F/ y ps
cbvoprab12.5  |-  ( ( x  =  w  /\  y  =  v )  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
cbvoprab12  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. <. w ,  v >. ,  z
>.  |  ps }
Distinct variable group:    x, y, z, w, v
Allowed substitution hints:    ph( x, y, z, w, v)    ps( x, y, z, w, v)

Proof of Theorem cbvoprab12
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 nfv 1491 . . . . 5  |-  F/ w  u  =  <. x ,  y >.
2 cbvoprab12.1 . . . . 5  |-  F/ w ph
31, 2nfan 1527 . . . 4  |-  F/ w
( u  =  <. x ,  y >.  /\  ph )
4 nfv 1491 . . . . 5  |-  F/ v  u  =  <. x ,  y >.
5 cbvoprab12.2 . . . . 5  |-  F/ v
ph
64, 5nfan 1527 . . . 4  |-  F/ v ( u  =  <. x ,  y >.  /\  ph )
7 nfv 1491 . . . . 5  |-  F/ x  u  =  <. w ,  v >.
8 cbvoprab12.3 . . . . 5  |-  F/ x ps
97, 8nfan 1527 . . . 4  |-  F/ x
( u  =  <. w ,  v >.  /\  ps )
10 nfv 1491 . . . . 5  |-  F/ y  u  =  <. w ,  v >.
11 cbvoprab12.4 . . . . 5  |-  F/ y ps
1210, 11nfan 1527 . . . 4  |-  F/ y ( u  =  <. w ,  v >.  /\  ps )
13 opeq12 3675 . . . . . 6  |-  ( ( x  =  w  /\  y  =  v )  -> 
<. x ,  y >.  =  <. w ,  v
>. )
1413eqeq2d 2127 . . . . 5  |-  ( ( x  =  w  /\  y  =  v )  ->  ( u  =  <. x ,  y >.  <->  u  =  <. w ,  v >.
) )
15 cbvoprab12.5 . . . . 5  |-  ( ( x  =  w  /\  y  =  v )  ->  ( ph  <->  ps )
)
1614, 15anbi12d 462 . . . 4  |-  ( ( x  =  w  /\  y  =  v )  ->  ( ( u  = 
<. x ,  y >.  /\  ph )  <->  ( u  =  <. w ,  v
>.  /\  ps ) ) )
173, 6, 9, 12, 16cbvex2 1872 . . 3  |-  ( E. x E. y ( u  =  <. x ,  y >.  /\  ph ) 
<->  E. w E. v
( u  =  <. w ,  v >.  /\  ps ) )
1817opabbii 3963 . 2  |-  { <. u ,  z >.  |  E. x E. y ( u  =  <. x ,  y
>.  /\  ph ) }  =  { <. u ,  z >.  |  E. w E. v ( u  =  <. w ,  v
>.  /\  ps ) }
19 dfoprab2 5784 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. u ,  z >.  |  E. x E. y ( u  =  <. x ,  y
>.  /\  ph ) }
20 dfoprab2 5784 . 2  |-  { <. <.
w ,  v >. ,  z >.  |  ps }  =  { <. u ,  z >.  |  E. w E. v ( u  =  <. w ,  v
>.  /\  ps ) }
2118, 19, 203eqtr4i 2146 1  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. <. w ,  v >. ,  z
>.  |  ps }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1314   F/wnf 1419   E.wex 1451   <.cop 3498   {copab 3956   {coprab 5741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-v 2660  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-opab 3958  df-oprab 5744
This theorem is referenced by:  cbvoprab12v  5812  cbvmpox  5815  dfoprab4f  6057  fmpox  6064  tposoprab  6143
  Copyright terms: Public domain W3C validator