| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cbvoprab12 | Unicode version | ||
| Description: Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) | 
| Ref | Expression | 
|---|---|
| cbvoprab12.1 | 
 | 
| cbvoprab12.2 | 
 | 
| cbvoprab12.3 | 
 | 
| cbvoprab12.4 | 
 | 
| cbvoprab12.5 | 
 | 
| Ref | Expression | 
|---|---|
| cbvoprab12 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfv 1542 | 
. . . . 5
 | |
| 2 | cbvoprab12.1 | 
. . . . 5
 | |
| 3 | 1, 2 | nfan 1579 | 
. . . 4
 | 
| 4 | nfv 1542 | 
. . . . 5
 | |
| 5 | cbvoprab12.2 | 
. . . . 5
 | |
| 6 | 4, 5 | nfan 1579 | 
. . . 4
 | 
| 7 | nfv 1542 | 
. . . . 5
 | |
| 8 | cbvoprab12.3 | 
. . . . 5
 | |
| 9 | 7, 8 | nfan 1579 | 
. . . 4
 | 
| 10 | nfv 1542 | 
. . . . 5
 | |
| 11 | cbvoprab12.4 | 
. . . . 5
 | |
| 12 | 10, 11 | nfan 1579 | 
. . . 4
 | 
| 13 | opeq12 3810 | 
. . . . . 6
 | |
| 14 | 13 | eqeq2d 2208 | 
. . . . 5
 | 
| 15 | cbvoprab12.5 | 
. . . . 5
 | |
| 16 | 14, 15 | anbi12d 473 | 
. . . 4
 | 
| 17 | 3, 6, 9, 12, 16 | cbvex2 1937 | 
. . 3
 | 
| 18 | 17 | opabbii 4100 | 
. 2
 | 
| 19 | dfoprab2 5969 | 
. 2
 | |
| 20 | dfoprab2 5969 | 
. 2
 | |
| 21 | 18, 19, 20 | 3eqtr4i 2227 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-opab 4095 df-oprab 5926 | 
| This theorem is referenced by: cbvoprab12v 5997 cbvmpox 6000 dfoprab4f 6251 fmpox 6258 tposoprab 6338 | 
| Copyright terms: Public domain | W3C validator |