ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prid2 Unicode version

Theorem prid2 3701
Description: An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
prid2.1  |-  B  e. 
_V
Assertion
Ref Expression
prid2  |-  B  e. 
{ A ,  B }

Proof of Theorem prid2
StepHypRef Expression
1 prid2.1 . . 3  |-  B  e. 
_V
21prid1 3700 . 2  |-  B  e. 
{ B ,  A }
3 prcom 3670 . 2  |-  { B ,  A }  =  { A ,  B }
42, 3eleqtri 2252 1  |-  B  e. 
{ A ,  B }
Colors of variables: wff set class
Syntax hints:    e. wcel 2148   _Vcvv 2739   {cpr 3595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601
This theorem is referenced by:  prel12  3773  opi2  4235  opeluu  4452  ontr2exmid  4526  onsucelsucexmid  4531  regexmidlemm  4533  ordtri2or2exmid  4572  ontri2orexmidim  4573  dmrnssfld  4892  funopg  5252  acexmidlema  5868  acexmidlemcase  5872  acexmidlem2  5874  1lt2o  6445  2dom  6807  unfiexmid  6919  djuss  7071  exmidonfinlem  7194  exmidfodomrlemr  7203  exmidfodomrlemrALT  7204  exmidaclem  7209  cnelprrecn  7949  mnfxr  8016  sup3exmid  8916  m1expcl2  10544  fnpr2ob  12764  lgsdir2lem3  14470  bdop  14666  2o01f  14785  iswomni0  14838
  Copyright terms: Public domain W3C validator