ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prid2 Unicode version

Theorem prid2 3745
Description: An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
prid2.1  |-  B  e. 
_V
Assertion
Ref Expression
prid2  |-  B  e. 
{ A ,  B }

Proof of Theorem prid2
StepHypRef Expression
1 prid2.1 . . 3  |-  B  e. 
_V
21prid1 3744 . 2  |-  B  e. 
{ B ,  A }
3 prcom 3714 . 2  |-  { B ,  A }  =  { A ,  B }
42, 3eleqtri 2281 1  |-  B  e. 
{ A ,  B }
Colors of variables: wff set class
Syntax hints:    e. wcel 2177   _Vcvv 2773   {cpr 3639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-sn 3644  df-pr 3645
This theorem is referenced by:  prel12  3820  opi2  4290  opeluu  4510  ontr2exmid  4586  onsucelsucexmid  4591  regexmidlemm  4593  ordtri2or2exmid  4632  ontri2orexmidim  4633  dmrnssfld  4955  funopg  5319  acexmidlema  5953  acexmidlemcase  5957  acexmidlem2  5959  1lt2o  6546  2dom  6916  en2m  6932  unfiexmid  7036  djuss  7193  pr2cv1  7324  exmidonfinlem  7327  exmidfodomrlemr  7336  exmidfodomrlemrALT  7337  exmidaclem  7346  cnelprrecn  8091  mnfxr  8159  sup3exmid  9060  m1expcl2  10738  fun2dmnop0  11024  fnpr2ob  13257  lgsdir2lem3  15592  upgrex  15784  bdop  15980  2o01f  16101  iswomni0  16162
  Copyright terms: Public domain W3C validator