![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prid2 | Unicode version |
Description: An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
prid2.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
prid2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prid2.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | prid1 3725 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | prcom 3695 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | eleqtri 2268 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 |
This theorem is referenced by: prel12 3798 opi2 4263 opeluu 4482 ontr2exmid 4558 onsucelsucexmid 4563 regexmidlemm 4565 ordtri2or2exmid 4604 ontri2orexmidim 4605 dmrnssfld 4926 funopg 5289 acexmidlema 5910 acexmidlemcase 5914 acexmidlem2 5916 1lt2o 6497 2dom 6861 unfiexmid 6976 djuss 7131 exmidonfinlem 7255 exmidfodomrlemr 7264 exmidfodomrlemrALT 7265 exmidaclem 7270 cnelprrecn 8010 mnfxr 8078 sup3exmid 8978 m1expcl2 10635 fnpr2ob 12926 lgsdir2lem3 15187 bdop 15437 2o01f 15557 iswomni0 15611 |
Copyright terms: Public domain | W3C validator |