| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prid2 | Unicode version | ||
| Description: An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| prid2.1 |
|
| Ref | Expression |
|---|---|
| prid2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prid2.1 |
. . 3
| |
| 2 | 1 | prid1 3744 |
. 2
|
| 3 | prcom 3714 |
. 2
| |
| 4 | 2, 3 | eleqtri 2281 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-sn 3644 df-pr 3645 |
| This theorem is referenced by: prel12 3820 opi2 4290 opeluu 4510 ontr2exmid 4586 onsucelsucexmid 4591 regexmidlemm 4593 ordtri2or2exmid 4632 ontri2orexmidim 4633 dmrnssfld 4955 funopg 5319 acexmidlema 5953 acexmidlemcase 5957 acexmidlem2 5959 1lt2o 6546 2dom 6916 en2m 6932 unfiexmid 7036 djuss 7193 pr2cv1 7324 exmidonfinlem 7327 exmidfodomrlemr 7336 exmidfodomrlemrALT 7337 exmidaclem 7346 cnelprrecn 8091 mnfxr 8159 sup3exmid 9060 m1expcl2 10738 fun2dmnop0 11024 fnpr2ob 13257 lgsdir2lem3 15592 upgrex 15784 bdop 15980 2o01f 16101 iswomni0 16162 |
| Copyright terms: Public domain | W3C validator |