Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prid2 | Unicode version |
Description: An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
prid2.1 |
Ref | Expression |
---|---|
prid2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prid2.1 | . . 3 | |
2 | 1 | prid1 3661 | . 2 |
3 | prcom 3631 | . 2 | |
4 | 2, 3 | eleqtri 2229 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2125 cvv 2709 cpr 3557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-un 3102 df-sn 3562 df-pr 3563 |
This theorem is referenced by: prel12 3730 opi2 4188 opeluu 4404 ontr2exmid 4478 onsucelsucexmid 4483 regexmidlemm 4485 ordtri2or2exmid 4524 ontri2orexmidim 4525 dmrnssfld 4842 funopg 5197 acexmidlema 5805 acexmidlemcase 5809 acexmidlem2 5811 1lt2o 6379 2dom 6739 unfiexmid 6851 djuss 7000 exmidonfinlem 7107 exmidfodomrlemr 7116 exmidfodomrlemrALT 7117 exmidaclem 7122 cnelprrecn 7847 mnfxr 7913 sup3exmid 8807 m1expcl2 10419 bdop 13388 2o01f 13507 iswomni0 13563 |
Copyright terms: Public domain | W3C validator |