| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnelprrecn | GIF version | ||
| Description: Complex numbers are a subset of the pair of real and complex numbers (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| cnelprrecn | ⊢ ℂ ∈ {ℝ, ℂ} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8031 | . 2 ⊢ ℂ ∈ V | |
| 2 | 1 | prid2 3739 | 1 ⊢ ℂ ∈ {ℝ, ℂ} |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 {cpr 3633 ℂcc 7905 ℝcr 7906 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-cnex 7998 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 |
| This theorem is referenced by: dvfcnpm 15080 dvexp 15101 dvmptcmulcn 15111 dvmptnegcn 15112 dvmptsubcn 15113 dvply1 15155 |
| Copyright terms: Public domain | W3C validator |