ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnelprrecn GIF version

Theorem cnelprrecn 8096
Description: Complex numbers are a subset of the pair of real and complex numbers (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
cnelprrecn ℂ ∈ {ℝ, ℂ}

Proof of Theorem cnelprrecn
StepHypRef Expression
1 cnex 8084 . 2 ℂ ∈ V
21prid2 3750 1 ℂ ∈ {ℝ, ℂ}
Colors of variables: wff set class
Syntax hints:  wcel 2178  {cpr 3644  cc 7958  cr 7959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-cnex 8051
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650
This theorem is referenced by:  dvfcnpm  15277  dvexp  15298  dvmptcmulcn  15308  dvmptnegcn  15309  dvmptsubcn  15310  dvply1  15352
  Copyright terms: Public domain W3C validator