ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adddir Unicode version

Theorem adddir 7890
Description: Distributive law for complex numbers (right-distributivity). (Contributed by NM, 10-Oct-2004.)
Assertion
Ref Expression
adddir  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  x.  C )  =  ( ( A  x.  C )  +  ( B  x.  C
) ) )

Proof of Theorem adddir
StepHypRef Expression
1 adddi 7885 . . 3  |-  ( ( C  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  ( C  x.  ( A  +  B ) )  =  ( ( C  x.  A )  +  ( C  x.  B ) ) )
213coml 1200 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( C  x.  ( A  +  B ) )  =  ( ( C  x.  A )  +  ( C  x.  B ) ) )
3 addcl 7878 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
4 mulcom 7882 . . . 4  |-  ( ( ( A  +  B
)  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  B )  x.  C
)  =  ( C  x.  ( A  +  B ) ) )
53, 4sylan 281 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  C  e.  CC )  ->  ( ( A  +  B )  x.  C )  =  ( C  x.  ( A  +  B ) ) )
653impa 1184 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  x.  C )  =  ( C  x.  ( A  +  B
) ) )
7 mulcom 7882 . . . 4  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( A  x.  C
)  =  ( C  x.  A ) )
873adant2 1006 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  C )  =  ( C  x.  A ) )
9 mulcom 7882 . . . 4  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  x.  C
)  =  ( C  x.  B ) )
1093adant1 1005 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( B  x.  C )  =  ( C  x.  B ) )
118, 10oveq12d 5860 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  C
)  +  ( B  x.  C ) )  =  ( ( C  x.  A )  +  ( C  x.  B
) ) )
122, 6, 113eqtr4d 2208 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  x.  C )  =  ( ( A  x.  C )  +  ( B  x.  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968    = wceq 1343    e. wcel 2136  (class class class)co 5842   CCcc 7751    + caddc 7756    x. cmul 7758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-addcl 7849  ax-mulcom 7854  ax-distr 7857
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845
This theorem is referenced by:  mulid1  7896  adddiri  7910  adddird  7924  muladd11  8031  muladd  8282  demoivreALT  11714  dvds2ln  11764  dvds2add  11765  odd2np1lem  11809  sincosq1eq  13400  abssinper  13407
  Copyright terms: Public domain W3C validator