ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adddir Unicode version

Theorem adddir 7750
Description: Distributive law for complex numbers (right-distributivity). (Contributed by NM, 10-Oct-2004.)
Assertion
Ref Expression
adddir  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  x.  C )  =  ( ( A  x.  C )  +  ( B  x.  C
) ) )

Proof of Theorem adddir
StepHypRef Expression
1 adddi 7745 . . 3  |-  ( ( C  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  ( C  x.  ( A  +  B ) )  =  ( ( C  x.  A )  +  ( C  x.  B ) ) )
213coml 1188 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( C  x.  ( A  +  B ) )  =  ( ( C  x.  A )  +  ( C  x.  B ) ) )
3 addcl 7738 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
4 mulcom 7742 . . . 4  |-  ( ( ( A  +  B
)  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  B )  x.  C
)  =  ( C  x.  ( A  +  B ) ) )
53, 4sylan 281 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  C  e.  CC )  ->  ( ( A  +  B )  x.  C )  =  ( C  x.  ( A  +  B ) ) )
653impa 1176 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  x.  C )  =  ( C  x.  ( A  +  B
) ) )
7 mulcom 7742 . . . 4  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( A  x.  C
)  =  ( C  x.  A ) )
873adant2 1000 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  C )  =  ( C  x.  A ) )
9 mulcom 7742 . . . 4  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  x.  C
)  =  ( C  x.  B ) )
1093adant1 999 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( B  x.  C )  =  ( C  x.  B ) )
118, 10oveq12d 5785 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  C
)  +  ( B  x.  C ) )  =  ( ( C  x.  A )  +  ( C  x.  B
) ) )
122, 6, 113eqtr4d 2180 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  x.  C )  =  ( ( A  x.  C )  +  ( B  x.  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962    = wceq 1331    e. wcel 1480  (class class class)co 5767   CCcc 7611    + caddc 7616    x. cmul 7618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-addcl 7709  ax-mulcom 7714  ax-distr 7717
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-rex 2420  df-v 2683  df-un 3070  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-iota 5083  df-fv 5126  df-ov 5770
This theorem is referenced by:  mulid1  7756  adddiri  7770  adddird  7784  muladd11  7888  muladd  8139  demoivreALT  11469  dvds2ln  11515  dvds2add  11516  odd2np1lem  11558  sincosq1eq  12909  abssinper  12916
  Copyright terms: Public domain W3C validator