ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adddir Unicode version

Theorem adddir 8063
Description: Distributive law for complex numbers (right-distributivity). (Contributed by NM, 10-Oct-2004.)
Assertion
Ref Expression
adddir  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  x.  C )  =  ( ( A  x.  C )  +  ( B  x.  C
) ) )

Proof of Theorem adddir
StepHypRef Expression
1 adddi 8057 . . 3  |-  ( ( C  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  ( C  x.  ( A  +  B ) )  =  ( ( C  x.  A )  +  ( C  x.  B ) ) )
213coml 1213 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( C  x.  ( A  +  B ) )  =  ( ( C  x.  A )  +  ( C  x.  B ) ) )
3 addcl 8050 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
4 mulcom 8054 . . . 4  |-  ( ( ( A  +  B
)  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  B )  x.  C
)  =  ( C  x.  ( A  +  B ) ) )
53, 4sylan 283 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  C  e.  CC )  ->  ( ( A  +  B )  x.  C )  =  ( C  x.  ( A  +  B ) ) )
653impa 1197 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  x.  C )  =  ( C  x.  ( A  +  B
) ) )
7 mulcom 8054 . . . 4  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( A  x.  C
)  =  ( C  x.  A ) )
873adant2 1019 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  C )  =  ( C  x.  A ) )
9 mulcom 8054 . . . 4  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  x.  C
)  =  ( C  x.  B ) )
1093adant1 1018 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( B  x.  C )  =  ( C  x.  B ) )
118, 10oveq12d 5962 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  C
)  +  ( B  x.  C ) )  =  ( ( C  x.  A )  +  ( C  x.  B
) ) )
122, 6, 113eqtr4d 2248 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  x.  C )  =  ( ( A  x.  C )  +  ( B  x.  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176  (class class class)co 5944   CCcc 7923    + caddc 7928    x. cmul 7930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-addcl 8021  ax-mulcom 8026  ax-distr 8029
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-iota 5232  df-fv 5279  df-ov 5947
This theorem is referenced by:  mulrid  8069  adddiri  8083  adddird  8098  muladd11  8205  muladd  8456  demoivreALT  12085  dvds2ln  12135  dvds2add  12136  odd2np1lem  12183  cncrng  14331  sincosq1eq  15311  abssinper  15318
  Copyright terms: Public domain W3C validator