Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > adddir | Unicode version |
Description: Distributive law for complex numbers (right-distributivity). (Contributed by NM, 10-Oct-2004.) |
Ref | Expression |
---|---|
adddir |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | adddi 7906 | . . 3 | |
2 | 1 | 3coml 1205 | . 2 |
3 | addcl 7899 | . . . 4 | |
4 | mulcom 7903 | . . . 4 | |
5 | 3, 4 | sylan 281 | . . 3 |
6 | 5 | 3impa 1189 | . 2 |
7 | mulcom 7903 | . . . 4 | |
8 | 7 | 3adant2 1011 | . . 3 |
9 | mulcom 7903 | . . . 4 | |
10 | 9 | 3adant1 1010 | . . 3 |
11 | 8, 10 | oveq12d 5871 | . 2 |
12 | 2, 6, 11 | 3eqtr4d 2213 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 (class class class)co 5853 cc 7772 caddc 7777 cmul 7779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-addcl 7870 ax-mulcom 7875 ax-distr 7878 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 |
This theorem is referenced by: mulid1 7917 adddiri 7931 adddird 7945 muladd11 8052 muladd 8303 demoivreALT 11736 dvds2ln 11786 dvds2add 11787 odd2np1lem 11831 sincosq1eq 13554 abssinper 13561 |
Copyright terms: Public domain | W3C validator |