ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvmptsubcn Unicode version

Theorem dvmptsubcn 12843
Description: Function-builder for derivative, subtraction rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.)
Hypotheses
Ref Expression
dvmptcmulcn.a  |-  ( (
ph  /\  x  e.  CC )  ->  A  e.  CC )
dvmptcmulcn.b  |-  ( (
ph  /\  x  e.  CC )  ->  B  e.  V )
dvmptcmulcn.da  |-  ( ph  ->  ( CC  _D  (
x  e.  CC  |->  A ) )  =  ( x  e.  CC  |->  B ) )
dvmptsubcn.c  |-  ( (
ph  /\  x  e.  CC )  ->  C  e.  CC )
dvmptsubcn.d  |-  ( (
ph  /\  x  e.  CC )  ->  D  e.  W )
dvmptsubcn.dc  |-  ( ph  ->  ( CC  _D  (
x  e.  CC  |->  C ) )  =  ( x  e.  CC  |->  D ) )
Assertion
Ref Expression
dvmptsubcn  |-  ( ph  ->  ( CC  _D  (
x  e.  CC  |->  ( A  -  C ) ) )  =  ( x  e.  CC  |->  ( B  -  D ) ) )
Distinct variable groups:    x, V    ph, x    x, W
Allowed substitution hints:    A( x)    B( x)    C( x)    D( x)

Proof of Theorem dvmptsubcn
StepHypRef Expression
1 cnelprrecn 7749 . . . 4  |-  CC  e.  { RR ,  CC }
21a1i 9 . . 3  |-  ( ph  ->  CC  e.  { RR ,  CC } )
3 dvmptcmulcn.a . . 3  |-  ( (
ph  /\  x  e.  CC )  ->  A  e.  CC )
4 dvmptcmulcn.b . . 3  |-  ( (
ph  /\  x  e.  CC )  ->  B  e.  V )
5 dvmptcmulcn.da . . 3  |-  ( ph  ->  ( CC  _D  (
x  e.  CC  |->  A ) )  =  ( x  e.  CC  |->  B ) )
6 ssidd 3113 . . 3  |-  ( ph  ->  CC  C_  CC )
7 dvmptsubcn.c . . . 4  |-  ( (
ph  /\  x  e.  CC )  ->  C  e.  CC )
87negcld 8053 . . 3  |-  ( (
ph  /\  x  e.  CC )  ->  -u C  e.  CC )
9 dvmptsubcn.d . . . . 5  |-  ( (
ph  /\  x  e.  CC )  ->  D  e.  W )
10 dvmptsubcn.dc . . . . 5  |-  ( ph  ->  ( CC  _D  (
x  e.  CC  |->  C ) )  =  ( x  e.  CC  |->  D ) )
112, 7, 9, 10, 6dvmptclx 12838 . . . 4  |-  ( (
ph  /\  x  e.  CC )  ->  D  e.  CC )
1211negcld 8053 . . 3  |-  ( (
ph  /\  x  e.  CC )  ->  -u D  e.  CC )
137, 9, 10dvmptnegcn 12842 . . 3  |-  ( ph  ->  ( CC  _D  (
x  e.  CC  |->  -u C ) )  =  ( x  e.  CC  |->  -u D ) )
142, 3, 4, 5, 6, 8, 12, 13dvmptaddx 12839 . 2  |-  ( ph  ->  ( CC  _D  (
x  e.  CC  |->  ( A  +  -u C
) ) )  =  ( x  e.  CC  |->  ( B  +  -u D
) ) )
153, 7negsubd 8072 . . . 4  |-  ( (
ph  /\  x  e.  CC )  ->  ( A  +  -u C )  =  ( A  -  C
) )
1615mpteq2dva 4013 . . 3  |-  ( ph  ->  ( x  e.  CC  |->  ( A  +  -u C
) )  =  ( x  e.  CC  |->  ( A  -  C ) ) )
1716oveq2d 5783 . 2  |-  ( ph  ->  ( CC  _D  (
x  e.  CC  |->  ( A  +  -u C
) ) )  =  ( CC  _D  (
x  e.  CC  |->  ( A  -  C ) ) ) )
182, 3, 4, 5, 6dvmptclx 12838 . . . 4  |-  ( (
ph  /\  x  e.  CC )  ->  B  e.  CC )
1918, 11negsubd 8072 . . 3  |-  ( (
ph  /\  x  e.  CC )  ->  ( B  +  -u D )  =  ( B  -  D
) )
2019mpteq2dva 4013 . 2  |-  ( ph  ->  ( x  e.  CC  |->  ( B  +  -u D
) )  =  ( x  e.  CC  |->  ( B  -  D ) ) )
2114, 17, 203eqtr3d 2178 1  |-  ( ph  ->  ( CC  _D  (
x  e.  CC  |->  ( A  -  C ) ) )  =  ( x  e.  CC  |->  ( B  -  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   {cpr 3523    |-> cmpt 3984  (class class class)co 5767   CCcc 7611   RRcr 7612    + caddc 7616    - cmin 7926   -ucneg 7927    _D cdv 12782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733  ax-addf 7735  ax-mulf 7736
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-isom 5127  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-of 5975  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-map 6537  df-pm 6538  df-sup 6864  df-inf 6865  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-xneg 9552  df-xadd 9553  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-rest 12111  df-topgen 12130  df-psmet 12145  df-xmet 12146  df-met 12147  df-bl 12148  df-mopn 12149  df-top 12154  df-topon 12167  df-bases 12199  df-ntr 12254  df-cn 12346  df-cnp 12347  df-tx 12411  df-cncf 12716  df-limced 12783  df-dvap 12784
This theorem is referenced by:  dvef  12845
  Copyright terms: Public domain W3C validator