ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgdir Unicode version

Theorem mulgdir 13360
Description: Sum of group multiples, generalized to  ZZ. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgnndir.b  |-  B  =  ( Base `  G
)
mulgnndir.t  |-  .x.  =  (.g
`  G )
mulgnndir.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mulgdir  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )

Proof of Theorem mulgdir
StepHypRef Expression
1 mulgnndir.b . . . 4  |-  B  =  ( Base `  G
)
2 mulgnndir.t . . . 4  |-  .x.  =  (.g
`  G )
3 mulgnndir.p . . . 4  |-  .+  =  ( +g  `  G )
41, 2, 3mulgdirlem 13359 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  ->  ( ( M  +  N )  .x.  X
)  =  ( ( M  .x.  X ) 
.+  ( N  .x.  X ) ) )
543expa 1205 . 2  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  +  N )  e.  NN0 )  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )
6 simpll 527 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  G  e.  Grp )
7 simpr2 1006 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  N  e.  ZZ )
87adantr 276 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  N  e.  ZZ )
98znegcld 9467 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  -u N  e.  ZZ )
10 simpr1 1005 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  M  e.  ZZ )
1110adantr 276 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  M  e.  ZZ )
1211znegcld 9467 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  -u M  e.  ZZ )
13 simplr3 1043 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  X  e.  B )
1411zcnd 9466 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  M  e.  CC )
1514negcld 8341 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  -u M  e.  CC )
168zcnd 9466 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  N  e.  CC )
1716negcld 8341 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  -u N  e.  CC )
1814, 16negdid 8367 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  -u ( M  +  N )  =  ( -u M  +  -u N ) )
1915, 17, 18comraddd 8200 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  -u ( M  +  N )  =  ( -u N  +  -u M ) )
20 simpr 110 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  -u ( M  +  N )  e.  NN0 )
2119, 20eqeltrrd 2274 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( -u N  +  -u M
)  e.  NN0 )
221, 2, 3mulgdirlem 13359 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( -u N  e.  ZZ  /\  -u M  e.  ZZ  /\  X  e.  B )  /\  ( -u N  +  -u M )  e. 
NN0 )  ->  (
( -u N  +  -u M )  .x.  X
)  =  ( (
-u N  .x.  X
)  .+  ( -u M  .x.  X ) ) )
236, 9, 12, 13, 21, 22syl131anc 1262 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( -u N  +  -u M )  .x.  X
)  =  ( (
-u N  .x.  X
)  .+  ( -u M  .x.  X ) ) )
2419oveq1d 5940 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( -u ( M  +  N
)  .x.  X )  =  ( ( -u N  +  -u M ) 
.x.  X ) )
2510, 7zaddcld 9469 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( M  +  N )  e.  ZZ )
2625adantr 276 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( M  +  N )  e.  ZZ )
27 eqid 2196 . . . . . . . 8  |-  ( invg `  G )  =  ( invg `  G )
281, 2, 27mulgneg 13346 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( M  +  N
)  e.  ZZ  /\  X  e.  B )  ->  ( -u ( M  +  N )  .x.  X )  =  ( ( invg `  G ) `  (
( M  +  N
)  .x.  X )
) )
296, 26, 13, 28syl3anc 1249 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( -u ( M  +  N
)  .x.  X )  =  ( ( invg `  G ) `
 ( ( M  +  N )  .x.  X ) ) )
3024, 29eqtr3d 2231 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( -u N  +  -u M )  .x.  X
)  =  ( ( invg `  G
) `  ( ( M  +  N )  .x.  X ) ) )
311, 2, 27mulgneg 13346 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( ( invg `  G ) `
 ( N  .x.  X ) ) )
326, 8, 13, 31syl3anc 1249 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( -u N  .x.  X )  =  ( ( invg `  G ) `
 ( N  .x.  X ) ) )
331, 2, 27mulgneg 13346 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  M  e.  ZZ  /\  X  e.  B )  ->  ( -u M  .x.  X )  =  ( ( invg `  G ) `
 ( M  .x.  X ) ) )
346, 11, 13, 33syl3anc 1249 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( -u M  .x.  X )  =  ( ( invg `  G ) `
 ( M  .x.  X ) ) )
3532, 34oveq12d 5943 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( -u N  .x.  X
)  .+  ( -u M  .x.  X ) )  =  ( ( ( invg `  G ) `
 ( N  .x.  X ) )  .+  ( ( invg `  G ) `  ( M  .x.  X ) ) ) )
361, 2mulgcl 13345 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  M  e.  ZZ  /\  X  e.  B )  ->  ( M  .x.  X )  e.  B )
376, 11, 13, 36syl3anc 1249 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( M  .x.  X )  e.  B )
381, 2mulgcl 13345 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
396, 8, 13, 38syl3anc 1249 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( N  .x.  X )  e.  B )
401, 3, 27grpinvadd 13280 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( M  .x.  X )  e.  B  /\  ( N  .x.  X )  e.  B )  ->  (
( invg `  G ) `  (
( M  .x.  X
)  .+  ( N  .x.  X ) ) )  =  ( ( ( invg `  G
) `  ( N  .x.  X ) )  .+  ( ( invg `  G ) `  ( M  .x.  X ) ) ) )
416, 37, 39, 40syl3anc 1249 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( invg `  G ) `  (
( M  .x.  X
)  .+  ( N  .x.  X ) ) )  =  ( ( ( invg `  G
) `  ( N  .x.  X ) )  .+  ( ( invg `  G ) `  ( M  .x.  X ) ) ) )
4235, 41eqtr4d 2232 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( -u N  .x.  X
)  .+  ( -u M  .x.  X ) )  =  ( ( invg `  G ) `  (
( M  .x.  X
)  .+  ( N  .x.  X ) ) ) )
4323, 30, 423eqtr3d 2237 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( invg `  G ) `  (
( M  +  N
)  .x.  X )
)  =  ( ( invg `  G
) `  ( ( M  .x.  X )  .+  ( N  .x.  X ) ) ) )
4443fveq2d 5565 . . 3  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( invg `  G ) `  (
( invg `  G ) `  (
( M  +  N
)  .x.  X )
) )  =  ( ( invg `  G ) `  (
( invg `  G ) `  (
( M  .x.  X
)  .+  ( N  .x.  X ) ) ) ) )
451, 2mulgcl 13345 . . . . 5  |-  ( ( G  e.  Grp  /\  ( M  +  N
)  e.  ZZ  /\  X  e.  B )  ->  ( ( M  +  N )  .x.  X
)  e.  B )
466, 26, 13, 45syl3anc 1249 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( M  +  N
)  .x.  X )  e.  B )
471, 27grpinvinv 13269 . . . 4  |-  ( ( G  e.  Grp  /\  ( ( M  +  N )  .x.  X
)  e.  B )  ->  ( ( invg `  G ) `
 ( ( invg `  G ) `
 ( ( M  +  N )  .x.  X ) ) )  =  ( ( M  +  N )  .x.  X ) )
486, 46, 47syl2anc 411 . . 3  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( invg `  G ) `  (
( invg `  G ) `  (
( M  +  N
)  .x.  X )
) )  =  ( ( M  +  N
)  .x.  X )
)
491, 3grpcl 13210 . . . . 5  |-  ( ( G  e.  Grp  /\  ( M  .x.  X )  e.  B  /\  ( N  .x.  X )  e.  B )  ->  (
( M  .x.  X
)  .+  ( N  .x.  X ) )  e.  B )
506, 37, 39, 49syl3anc 1249 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( M  .x.  X
)  .+  ( N  .x.  X ) )  e.  B )
511, 27grpinvinv 13269 . . . 4  |-  ( ( G  e.  Grp  /\  ( ( M  .x.  X )  .+  ( N  .x.  X ) )  e.  B )  -> 
( ( invg `  G ) `  (
( invg `  G ) `  (
( M  .x.  X
)  .+  ( N  .x.  X ) ) ) )  =  ( ( M  .x.  X ) 
.+  ( N  .x.  X ) ) )
526, 50, 51syl2anc 411 . . 3  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( invg `  G ) `  (
( invg `  G ) `  (
( M  .x.  X
)  .+  ( N  .x.  X ) ) ) )  =  ( ( M  .x.  X ) 
.+  ( N  .x.  X ) ) )
5344, 48, 523eqtr3d 2237 . 2  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( M  +  N
)  .x.  X )  =  ( ( M 
.x.  X )  .+  ( N  .x.  X ) ) )
54 elznn0 9358 . . . 4  |-  ( ( M  +  N )  e.  ZZ  <->  ( ( M  +  N )  e.  RR  /\  ( ( M  +  N )  e.  NN0  \/  -u ( M  +  N )  e.  NN0 ) ) )
5554simprbi 275 . . 3  |-  ( ( M  +  N )  e.  ZZ  ->  (
( M  +  N
)  e.  NN0  \/  -u ( M  +  N
)  e.  NN0 )
)
5625, 55syl 14 . 2  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  +  N )  e.  NN0  \/  -u ( M  +  N )  e.  NN0 ) )
575, 53, 56mpjaodan 799 1  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2167   ` cfv 5259  (class class class)co 5925   RRcr 7895    + caddc 7899   -ucneg 8215   NN0cn0 9266   ZZcz 9343   Basecbs 12703   +g cplusg 12780   Grpcgrp 13202   invgcminusg 13203  .gcmg 13325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-seqfrec 10557  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-mulg 13326
This theorem is referenced by:  mulgp1  13361  mulgneg2  13362  mulgmodid  13367  mulgsubdir  13368  mulgghm2  14240
  Copyright terms: Public domain W3C validator