ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgdir Unicode version

Theorem mulgdir 13490
Description: Sum of group multiples, generalized to  ZZ. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgnndir.b  |-  B  =  ( Base `  G
)
mulgnndir.t  |-  .x.  =  (.g
`  G )
mulgnndir.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mulgdir  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )

Proof of Theorem mulgdir
StepHypRef Expression
1 mulgnndir.b . . . 4  |-  B  =  ( Base `  G
)
2 mulgnndir.t . . . 4  |-  .x.  =  (.g
`  G )
3 mulgnndir.p . . . 4  |-  .+  =  ( +g  `  G )
41, 2, 3mulgdirlem 13489 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  ->  ( ( M  +  N )  .x.  X
)  =  ( ( M  .x.  X ) 
.+  ( N  .x.  X ) ) )
543expa 1206 . 2  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  +  N )  e.  NN0 )  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )
6 simpll 527 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  G  e.  Grp )
7 simpr2 1007 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  N  e.  ZZ )
87adantr 276 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  N  e.  ZZ )
98znegcld 9497 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  -u N  e.  ZZ )
10 simpr1 1006 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  M  e.  ZZ )
1110adantr 276 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  M  e.  ZZ )
1211znegcld 9497 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  -u M  e.  ZZ )
13 simplr3 1044 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  X  e.  B )
1411zcnd 9496 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  M  e.  CC )
1514negcld 8370 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  -u M  e.  CC )
168zcnd 9496 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  N  e.  CC )
1716negcld 8370 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  -u N  e.  CC )
1814, 16negdid 8396 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  -u ( M  +  N )  =  ( -u M  +  -u N ) )
1915, 17, 18comraddd 8229 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  -u ( M  +  N )  =  ( -u N  +  -u M ) )
20 simpr 110 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  -u ( M  +  N )  e.  NN0 )
2119, 20eqeltrrd 2283 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( -u N  +  -u M
)  e.  NN0 )
221, 2, 3mulgdirlem 13489 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( -u N  e.  ZZ  /\  -u M  e.  ZZ  /\  X  e.  B )  /\  ( -u N  +  -u M )  e. 
NN0 )  ->  (
( -u N  +  -u M )  .x.  X
)  =  ( (
-u N  .x.  X
)  .+  ( -u M  .x.  X ) ) )
236, 9, 12, 13, 21, 22syl131anc 1263 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( -u N  +  -u M )  .x.  X
)  =  ( (
-u N  .x.  X
)  .+  ( -u M  .x.  X ) ) )
2419oveq1d 5959 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( -u ( M  +  N
)  .x.  X )  =  ( ( -u N  +  -u M ) 
.x.  X ) )
2510, 7zaddcld 9499 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( M  +  N )  e.  ZZ )
2625adantr 276 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( M  +  N )  e.  ZZ )
27 eqid 2205 . . . . . . . 8  |-  ( invg `  G )  =  ( invg `  G )
281, 2, 27mulgneg 13476 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( M  +  N
)  e.  ZZ  /\  X  e.  B )  ->  ( -u ( M  +  N )  .x.  X )  =  ( ( invg `  G ) `  (
( M  +  N
)  .x.  X )
) )
296, 26, 13, 28syl3anc 1250 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( -u ( M  +  N
)  .x.  X )  =  ( ( invg `  G ) `
 ( ( M  +  N )  .x.  X ) ) )
3024, 29eqtr3d 2240 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( -u N  +  -u M )  .x.  X
)  =  ( ( invg `  G
) `  ( ( M  +  N )  .x.  X ) ) )
311, 2, 27mulgneg 13476 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( ( invg `  G ) `
 ( N  .x.  X ) ) )
326, 8, 13, 31syl3anc 1250 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( -u N  .x.  X )  =  ( ( invg `  G ) `
 ( N  .x.  X ) ) )
331, 2, 27mulgneg 13476 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  M  e.  ZZ  /\  X  e.  B )  ->  ( -u M  .x.  X )  =  ( ( invg `  G ) `
 ( M  .x.  X ) ) )
346, 11, 13, 33syl3anc 1250 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( -u M  .x.  X )  =  ( ( invg `  G ) `
 ( M  .x.  X ) ) )
3532, 34oveq12d 5962 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( -u N  .x.  X
)  .+  ( -u M  .x.  X ) )  =  ( ( ( invg `  G ) `
 ( N  .x.  X ) )  .+  ( ( invg `  G ) `  ( M  .x.  X ) ) ) )
361, 2mulgcl 13475 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  M  e.  ZZ  /\  X  e.  B )  ->  ( M  .x.  X )  e.  B )
376, 11, 13, 36syl3anc 1250 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( M  .x.  X )  e.  B )
381, 2mulgcl 13475 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
396, 8, 13, 38syl3anc 1250 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( N  .x.  X )  e.  B )
401, 3, 27grpinvadd 13410 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( M  .x.  X )  e.  B  /\  ( N  .x.  X )  e.  B )  ->  (
( invg `  G ) `  (
( M  .x.  X
)  .+  ( N  .x.  X ) ) )  =  ( ( ( invg `  G
) `  ( N  .x.  X ) )  .+  ( ( invg `  G ) `  ( M  .x.  X ) ) ) )
416, 37, 39, 40syl3anc 1250 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( invg `  G ) `  (
( M  .x.  X
)  .+  ( N  .x.  X ) ) )  =  ( ( ( invg `  G
) `  ( N  .x.  X ) )  .+  ( ( invg `  G ) `  ( M  .x.  X ) ) ) )
4235, 41eqtr4d 2241 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( -u N  .x.  X
)  .+  ( -u M  .x.  X ) )  =  ( ( invg `  G ) `  (
( M  .x.  X
)  .+  ( N  .x.  X ) ) ) )
4323, 30, 423eqtr3d 2246 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( invg `  G ) `  (
( M  +  N
)  .x.  X )
)  =  ( ( invg `  G
) `  ( ( M  .x.  X )  .+  ( N  .x.  X ) ) ) )
4443fveq2d 5580 . . 3  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( invg `  G ) `  (
( invg `  G ) `  (
( M  +  N
)  .x.  X )
) )  =  ( ( invg `  G ) `  (
( invg `  G ) `  (
( M  .x.  X
)  .+  ( N  .x.  X ) ) ) ) )
451, 2mulgcl 13475 . . . . 5  |-  ( ( G  e.  Grp  /\  ( M  +  N
)  e.  ZZ  /\  X  e.  B )  ->  ( ( M  +  N )  .x.  X
)  e.  B )
466, 26, 13, 45syl3anc 1250 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( M  +  N
)  .x.  X )  e.  B )
471, 27grpinvinv 13399 . . . 4  |-  ( ( G  e.  Grp  /\  ( ( M  +  N )  .x.  X
)  e.  B )  ->  ( ( invg `  G ) `
 ( ( invg `  G ) `
 ( ( M  +  N )  .x.  X ) ) )  =  ( ( M  +  N )  .x.  X ) )
486, 46, 47syl2anc 411 . . 3  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( invg `  G ) `  (
( invg `  G ) `  (
( M  +  N
)  .x.  X )
) )  =  ( ( M  +  N
)  .x.  X )
)
491, 3grpcl 13340 . . . . 5  |-  ( ( G  e.  Grp  /\  ( M  .x.  X )  e.  B  /\  ( N  .x.  X )  e.  B )  ->  (
( M  .x.  X
)  .+  ( N  .x.  X ) )  e.  B )
506, 37, 39, 49syl3anc 1250 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( M  .x.  X
)  .+  ( N  .x.  X ) )  e.  B )
511, 27grpinvinv 13399 . . . 4  |-  ( ( G  e.  Grp  /\  ( ( M  .x.  X )  .+  ( N  .x.  X ) )  e.  B )  -> 
( ( invg `  G ) `  (
( invg `  G ) `  (
( M  .x.  X
)  .+  ( N  .x.  X ) ) ) )  =  ( ( M  .x.  X ) 
.+  ( N  .x.  X ) ) )
526, 50, 51syl2anc 411 . . 3  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( invg `  G ) `  (
( invg `  G ) `  (
( M  .x.  X
)  .+  ( N  .x.  X ) ) ) )  =  ( ( M  .x.  X ) 
.+  ( N  .x.  X ) ) )
5344, 48, 523eqtr3d 2246 . 2  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( M  +  N
)  .x.  X )  =  ( ( M 
.x.  X )  .+  ( N  .x.  X ) ) )
54 elznn0 9387 . . . 4  |-  ( ( M  +  N )  e.  ZZ  <->  ( ( M  +  N )  e.  RR  /\  ( ( M  +  N )  e.  NN0  \/  -u ( M  +  N )  e.  NN0 ) ) )
5554simprbi 275 . . 3  |-  ( ( M  +  N )  e.  ZZ  ->  (
( M  +  N
)  e.  NN0  \/  -u ( M  +  N
)  e.  NN0 )
)
5625, 55syl 14 . 2  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  +  N )  e.  NN0  \/  -u ( M  +  N )  e.  NN0 ) )
575, 53, 56mpjaodan 800 1  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    /\ w3a 981    = wceq 1373    e. wcel 2176   ` cfv 5271  (class class class)co 5944   RRcr 7924    + caddc 7928   -ucneg 8244   NN0cn0 9295   ZZcz 9372   Basecbs 12832   +g cplusg 12909   Grpcgrp 13332   invgcminusg 13333  .gcmg 13455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-2 9095  df-n0 9296  df-z 9373  df-uz 9649  df-fz 10131  df-seqfrec 10593  df-ndx 12835  df-slot 12836  df-base 12838  df-plusg 12922  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-mulg 13456
This theorem is referenced by:  mulgp1  13491  mulgneg2  13492  mulgmodid  13497  mulgsubdir  13498  mulgghm2  14370
  Copyright terms: Public domain W3C validator