ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalglemnn Unicode version

Theorem divalglemnn 11651
Description: Lemma for divalg 11657. Existence for a positive denominator. (Contributed by Jim Kingdon, 30-Nov-2021.)
Assertion
Ref Expression
divalglemnn  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E. r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )
Distinct variable groups:    D, q, r    N, q, r

Proof of Theorem divalglemnn
StepHypRef Expression
1 zmodcl 10148 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  e.  NN0 )
21nn0zd 9195 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  e.  ZZ )
3 znq 9443 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  /  D
)  e.  QQ )
43flqcld 10081 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( |_ `  ( N  /  D ) )  e.  ZZ )
51nn0ge0d 9057 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  0  <_  ( N  mod  D ) )
6 zq 9445 . . . . 5  |-  ( N  e.  ZZ  ->  N  e.  QQ )
76adantr 274 . . . 4  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  N  e.  QQ )
8 nnq 9452 . . . . 5  |-  ( D  e.  NN  ->  D  e.  QQ )
98adantl 275 . . . 4  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  D  e.  QQ )
10 nngt0 8769 . . . . 5  |-  ( D  e.  NN  ->  0  <  D )
1110adantl 275 . . . 4  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  0  <  D )
12 modqlt 10137 . . . 4  |-  ( ( N  e.  QQ  /\  D  e.  QQ  /\  0  <  D )  ->  ( N  mod  D )  < 
D )
137, 9, 11, 12syl3anc 1217 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  <  D )
14 nnre 8751 . . . . 5  |-  ( D  e.  NN  ->  D  e.  RR )
1514adantl 275 . . . 4  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  D  e.  RR )
16 0red 7791 . . . . 5  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  0  e.  RR )
1716, 15, 11ltled 7905 . . . 4  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  0  <_  D )
1815, 17absidd 10971 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( abs `  D
)  =  D )
1913, 18breqtrrd 3964 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  <  ( abs `  D ) )
201nn0cnd 9056 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  e.  CC )
214zcnd 9198 . . . 4  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( |_ `  ( N  /  D ) )  e.  CC )
22 simpr 109 . . . . 5  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  D  e.  NN )
2322nncnd 8758 . . . 4  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  D  e.  CC )
2421, 23mulcld 7810 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( ( |_ `  ( N  /  D
) )  x.  D
)  e.  CC )
25 modqvalr 10129 . . . . . 6  |-  ( ( N  e.  QQ  /\  D  e.  QQ  /\  0  <  D )  ->  ( N  mod  D )  =  ( N  -  (
( |_ `  ( N  /  D ) )  x.  D ) ) )
267, 9, 11, 25syl3anc 1217 . . . . 5  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  =  ( N  -  ( ( |_
`  ( N  /  D ) )  x.  D ) ) )
2726oveq1d 5797 . . . 4  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( ( N  mod  D )  +  ( ( |_ `  ( N  /  D ) )  x.  D ) )  =  ( ( N  -  ( ( |_
`  ( N  /  D ) )  x.  D ) )  +  ( ( |_ `  ( N  /  D
) )  x.  D
) ) )
28 simpl 108 . . . . . 6  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  N  e.  ZZ )
2928zcnd 9198 . . . . 5  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  N  e.  CC )
3029, 24npcand 8101 . . . 4  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( ( N  -  ( ( |_ `  ( N  /  D
) )  x.  D
) )  +  ( ( |_ `  ( N  /  D ) )  x.  D ) )  =  N )
3127, 30eqtr2d 2174 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  N  =  ( ( N  mod  D )  +  ( ( |_
`  ( N  /  D ) )  x.  D ) ) )
3220, 24, 31comraddd 7943 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  N  =  ( ( ( |_ `  ( N  /  D ) )  x.  D )  +  ( N  mod  D
) ) )
33 breq2 3941 . . . 4  |-  ( r  =  ( N  mod  D )  ->  ( 0  <_  r  <->  0  <_  ( N  mod  D ) ) )
34 breq1 3940 . . . 4  |-  ( r  =  ( N  mod  D )  ->  ( r  <  ( abs `  D
)  <->  ( N  mod  D )  <  ( abs `  D ) ) )
35 oveq2 5790 . . . . 5  |-  ( r  =  ( N  mod  D )  ->  ( (
q  x.  D )  +  r )  =  ( ( q  x.  D )  +  ( N  mod  D ) ) )
3635eqeq2d 2152 . . . 4  |-  ( r  =  ( N  mod  D )  ->  ( N  =  ( ( q  x.  D )  +  r )  <->  N  =  ( ( q  x.  D )  +  ( N  mod  D ) ) ) )
3733, 34, 363anbi123d 1291 . . 3  |-  ( r  =  ( N  mod  D )  ->  ( (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  ( 0  <_  ( N  mod  D )  /\  ( N  mod  D )  < 
( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  ( N  mod  D ) ) ) ) )
38 oveq1 5789 . . . . . 6  |-  ( q  =  ( |_ `  ( N  /  D
) )  ->  (
q  x.  D )  =  ( ( |_
`  ( N  /  D ) )  x.  D ) )
3938oveq1d 5797 . . . . 5  |-  ( q  =  ( |_ `  ( N  /  D
) )  ->  (
( q  x.  D
)  +  ( N  mod  D ) )  =  ( ( ( |_ `  ( N  /  D ) )  x.  D )  +  ( N  mod  D
) ) )
4039eqeq2d 2152 . . . 4  |-  ( q  =  ( |_ `  ( N  /  D
) )  ->  ( N  =  ( (
q  x.  D )  +  ( N  mod  D ) )  <->  N  =  ( ( ( |_
`  ( N  /  D ) )  x.  D )  +  ( N  mod  D ) ) ) )
41403anbi3d 1297 . . 3  |-  ( q  =  ( |_ `  ( N  /  D
) )  ->  (
( 0  <_  ( N  mod  D )  /\  ( N  mod  D )  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  ( N  mod  D ) ) )  <->  ( 0  <_  ( N  mod  D )  /\  ( N  mod  D )  < 
( abs `  D
)  /\  N  =  ( ( ( |_
`  ( N  /  D ) )  x.  D )  +  ( N  mod  D ) ) ) ) )
4237, 41rspc2ev 2808 . 2  |-  ( ( ( N  mod  D
)  e.  ZZ  /\  ( |_ `  ( N  /  D ) )  e.  ZZ  /\  (
0  <_  ( N  mod  D )  /\  ( N  mod  D )  < 
( abs `  D
)  /\  N  =  ( ( ( |_
`  ( N  /  D ) )  x.  D )  +  ( N  mod  D ) ) ) )  ->  E. r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )
432, 4, 5, 19, 32, 42syl113anc 1229 1  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E. r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963    = wceq 1332    e. wcel 1481   E.wrex 2418   class class class wbr 3937   ` cfv 5131  (class class class)co 5782   RRcr 7643   0cc0 7644    + caddc 7647    x. cmul 7649    < clt 7824    <_ cle 7825    - cmin 7957    / cdiv 8456   NNcn 8744   ZZcz 9078   QQcq 9438   |_cfl 10072    mod cmo 10126   abscabs 10801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fl 10074  df-mod 10127  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803
This theorem is referenced by:  divalglemeunn  11654  divalglemex  11655
  Copyright terms: Public domain W3C validator