ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalglemnn Unicode version

Theorem divalglemnn 12229
Description: Lemma for divalg 12235. Existence for a positive denominator. (Contributed by Jim Kingdon, 30-Nov-2021.)
Assertion
Ref Expression
divalglemnn  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E. r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )
Distinct variable groups:    D, q, r    N, q, r

Proof of Theorem divalglemnn
StepHypRef Expression
1 zmodcl 10489 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  e.  NN0 )
21nn0zd 9493 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  e.  ZZ )
3 znq 9745 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  /  D
)  e.  QQ )
43flqcld 10420 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( |_ `  ( N  /  D ) )  e.  ZZ )
51nn0ge0d 9351 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  0  <_  ( N  mod  D ) )
6 zq 9747 . . . . 5  |-  ( N  e.  ZZ  ->  N  e.  QQ )
76adantr 276 . . . 4  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  N  e.  QQ )
8 nnq 9754 . . . . 5  |-  ( D  e.  NN  ->  D  e.  QQ )
98adantl 277 . . . 4  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  D  e.  QQ )
10 nngt0 9061 . . . . 5  |-  ( D  e.  NN  ->  0  <  D )
1110adantl 277 . . . 4  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  0  <  D )
12 modqlt 10478 . . . 4  |-  ( ( N  e.  QQ  /\  D  e.  QQ  /\  0  <  D )  ->  ( N  mod  D )  < 
D )
137, 9, 11, 12syl3anc 1250 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  <  D )
14 nnre 9043 . . . . 5  |-  ( D  e.  NN  ->  D  e.  RR )
1514adantl 277 . . . 4  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  D  e.  RR )
16 0red 8073 . . . . 5  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  0  e.  RR )
1716, 15, 11ltled 8191 . . . 4  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  0  <_  D )
1815, 17absidd 11478 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( abs `  D
)  =  D )
1913, 18breqtrrd 4072 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  <  ( abs `  D ) )
201nn0cnd 9350 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  e.  CC )
214zcnd 9496 . . . 4  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( |_ `  ( N  /  D ) )  e.  CC )
22 simpr 110 . . . . 5  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  D  e.  NN )
2322nncnd 9050 . . . 4  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  D  e.  CC )
2421, 23mulcld 8093 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( ( |_ `  ( N  /  D
) )  x.  D
)  e.  CC )
25 modqvalr 10470 . . . . . 6  |-  ( ( N  e.  QQ  /\  D  e.  QQ  /\  0  <  D )  ->  ( N  mod  D )  =  ( N  -  (
( |_ `  ( N  /  D ) )  x.  D ) ) )
267, 9, 11, 25syl3anc 1250 . . . . 5  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( N  mod  D
)  =  ( N  -  ( ( |_
`  ( N  /  D ) )  x.  D ) ) )
2726oveq1d 5959 . . . 4  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( ( N  mod  D )  +  ( ( |_ `  ( N  /  D ) )  x.  D ) )  =  ( ( N  -  ( ( |_
`  ( N  /  D ) )  x.  D ) )  +  ( ( |_ `  ( N  /  D
) )  x.  D
) ) )
28 simpl 109 . . . . . 6  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  N  e.  ZZ )
2928zcnd 9496 . . . . 5  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  N  e.  CC )
3029, 24npcand 8387 . . . 4  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( ( N  -  ( ( |_ `  ( N  /  D
) )  x.  D
) )  +  ( ( |_ `  ( N  /  D ) )  x.  D ) )  =  N )
3127, 30eqtr2d 2239 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  N  =  ( ( N  mod  D )  +  ( ( |_
`  ( N  /  D ) )  x.  D ) ) )
3220, 24, 31comraddd 8229 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  N  =  ( ( ( |_ `  ( N  /  D ) )  x.  D )  +  ( N  mod  D
) ) )
33 breq2 4048 . . . 4  |-  ( r  =  ( N  mod  D )  ->  ( 0  <_  r  <->  0  <_  ( N  mod  D ) ) )
34 breq1 4047 . . . 4  |-  ( r  =  ( N  mod  D )  ->  ( r  <  ( abs `  D
)  <->  ( N  mod  D )  <  ( abs `  D ) ) )
35 oveq2 5952 . . . . 5  |-  ( r  =  ( N  mod  D )  ->  ( (
q  x.  D )  +  r )  =  ( ( q  x.  D )  +  ( N  mod  D ) ) )
3635eqeq2d 2217 . . . 4  |-  ( r  =  ( N  mod  D )  ->  ( N  =  ( ( q  x.  D )  +  r )  <->  N  =  ( ( q  x.  D )  +  ( N  mod  D ) ) ) )
3733, 34, 363anbi123d 1325 . . 3  |-  ( r  =  ( N  mod  D )  ->  ( (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  ( 0  <_  ( N  mod  D )  /\  ( N  mod  D )  < 
( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  ( N  mod  D ) ) ) ) )
38 oveq1 5951 . . . . . 6  |-  ( q  =  ( |_ `  ( N  /  D
) )  ->  (
q  x.  D )  =  ( ( |_
`  ( N  /  D ) )  x.  D ) )
3938oveq1d 5959 . . . . 5  |-  ( q  =  ( |_ `  ( N  /  D
) )  ->  (
( q  x.  D
)  +  ( N  mod  D ) )  =  ( ( ( |_ `  ( N  /  D ) )  x.  D )  +  ( N  mod  D
) ) )
4039eqeq2d 2217 . . . 4  |-  ( q  =  ( |_ `  ( N  /  D
) )  ->  ( N  =  ( (
q  x.  D )  +  ( N  mod  D ) )  <->  N  =  ( ( ( |_
`  ( N  /  D ) )  x.  D )  +  ( N  mod  D ) ) ) )
41403anbi3d 1331 . . 3  |-  ( q  =  ( |_ `  ( N  /  D
) )  ->  (
( 0  <_  ( N  mod  D )  /\  ( N  mod  D )  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  ( N  mod  D ) ) )  <->  ( 0  <_  ( N  mod  D )  /\  ( N  mod  D )  < 
( abs `  D
)  /\  N  =  ( ( ( |_
`  ( N  /  D ) )  x.  D )  +  ( N  mod  D ) ) ) ) )
4237, 41rspc2ev 2892 . 2  |-  ( ( ( N  mod  D
)  e.  ZZ  /\  ( |_ `  ( N  /  D ) )  e.  ZZ  /\  (
0  <_  ( N  mod  D )  /\  ( N  mod  D )  < 
( abs `  D
)  /\  N  =  ( ( ( |_
`  ( N  /  D ) )  x.  D )  +  ( N  mod  D ) ) ) )  ->  E. r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )
432, 4, 5, 19, 32, 42syl113anc 1262 1  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E. r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176   E.wrex 2485   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   RRcr 7924   0cc0 7925    + caddc 7928    x. cmul 7930    < clt 8107    <_ cle 8108    - cmin 8243    / cdiv 8745   NNcn 9036   ZZcz 9372   QQcq 9740   |_cfl 10411    mod cmo 10467   abscabs 11308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fl 10413  df-mod 10468  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310
This theorem is referenced by:  divalglemeunn  12232  divalglemex  12233
  Copyright terms: Public domain W3C validator