ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  arisum Unicode version

Theorem arisum 11388
Description: Arithmetic series sum of the first  N positive integers. This is Metamath 100 proof #68. (Contributed by FL, 16-Nov-2006.) (Proof shortened by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
arisum  |-  ( N  e.  NN0  ->  sum_ k  e.  ( 1 ... N
) k  =  ( ( ( N ^
2 )  +  N
)  /  2 ) )
Distinct variable group:    k, N

Proof of Theorem arisum
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 elnn0 9086 . 2  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 1zzd 9188 . . . . . 6  |-  ( N  e.  NN  ->  1  e.  ZZ )
3 nnz 9180 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  ZZ )
4 elfzelz 9921 . . . . . . . 8  |-  ( k  e.  ( 1 ... N )  ->  k  e.  ZZ )
54zcnd 9281 . . . . . . 7  |-  ( k  e.  ( 1 ... N )  ->  k  e.  CC )
65adantl 275 . . . . . 6  |-  ( ( N  e.  NN  /\  k  e.  ( 1 ... N ) )  ->  k  e.  CC )
7 id 19 . . . . . 6  |-  ( k  =  ( j  +  1 )  ->  k  =  ( j  +  1 ) )
82, 2, 3, 6, 7fsumshftm 11335 . . . . 5  |-  ( N  e.  NN  ->  sum_ k  e.  ( 1 ... N
) k  =  sum_ j  e.  ( (
1  -  1 ) ... ( N  - 
1 ) ) ( j  +  1 ) )
9 1m1e0 8896 . . . . . . 7  |-  ( 1  -  1 )  =  0
109oveq1i 5831 . . . . . 6  |-  ( ( 1  -  1 ) ... ( N  - 
1 ) )  =  ( 0 ... ( N  -  1 ) )
1110sumeq1i 11253 . . . . 5  |-  sum_ j  e.  ( ( 1  -  1 ) ... ( N  -  1 ) ) ( j  +  1 )  =  sum_ j  e.  ( 0 ... ( N  - 
1 ) ) ( j  +  1 )
128, 11eqtrdi 2206 . . . 4  |-  ( N  e.  NN  ->  sum_ k  e.  ( 1 ... N
) k  =  sum_ j  e.  ( 0 ... ( N  - 
1 ) ) ( j  +  1 ) )
13 elfznn0 10009 . . . . . . . . 9  |-  ( j  e.  ( 0 ... ( N  -  1 ) )  ->  j  e.  NN0 )
1413adantl 275 . . . . . . . 8  |-  ( ( N  e.  NN  /\  j  e.  ( 0 ... ( N  - 
1 ) ) )  ->  j  e.  NN0 )
15 bcnp1n 10626 . . . . . . . 8  |-  ( j  e.  NN0  ->  ( ( j  +  1 )  _C  j )  =  ( j  +  1 ) )
1614, 15syl 14 . . . . . . 7  |-  ( ( N  e.  NN  /\  j  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( ( j  +  1 )  _C  j )  =  ( j  +  1 ) )
1714nn0cnd 9139 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  j  e.  ( 0 ... ( N  - 
1 ) ) )  ->  j  e.  CC )
18 ax-1cn 7819 . . . . . . . . 9  |-  1  e.  CC
19 addcom 8006 . . . . . . . . 9  |-  ( ( j  e.  CC  /\  1  e.  CC )  ->  ( j  +  1 )  =  ( 1  +  j ) )
2017, 18, 19sylancl 410 . . . . . . . 8  |-  ( ( N  e.  NN  /\  j  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( j  +  1 )  =  ( 1  +  j ) )
2120oveq1d 5836 . . . . . . 7  |-  ( ( N  e.  NN  /\  j  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( ( j  +  1 )  _C  j )  =  ( ( 1  +  j )  _C  j ) )
2216, 21eqtr3d 2192 . . . . . 6  |-  ( ( N  e.  NN  /\  j  e.  ( 0 ... ( N  - 
1 ) ) )  ->  ( j  +  1 )  =  ( ( 1  +  j )  _C  j ) )
2322sumeq2dv 11258 . . . . 5  |-  ( N  e.  NN  ->  sum_ j  e.  ( 0 ... ( N  -  1 ) ) ( j  +  1 )  =  sum_ j  e.  ( 0 ... ( N  - 
1 ) ) ( ( 1  +  j )  _C  j ) )
24 1nn0 9100 . . . . . 6  |-  1  e.  NN0
25 nnm1nn0 9125 . . . . . 6  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
26 bcxmas 11379 . . . . . 6  |-  ( ( 1  e.  NN0  /\  ( N  -  1
)  e.  NN0 )  ->  ( ( ( 1  +  1 )  +  ( N  -  1 ) )  _C  ( N  -  1 ) )  =  sum_ j  e.  ( 0 ... ( N  -  1 ) ) ( ( 1  +  j )  _C  j ) )
2724, 25, 26sylancr 411 . . . . 5  |-  ( N  e.  NN  ->  (
( ( 1  +  1 )  +  ( N  -  1 ) )  _C  ( N  -  1 ) )  =  sum_ j  e.  ( 0 ... ( N  -  1 ) ) ( ( 1  +  j )  _C  j
) )
2823, 27eqtr4d 2193 . . . 4  |-  ( N  e.  NN  ->  sum_ j  e.  ( 0 ... ( N  -  1 ) ) ( j  +  1 )  =  ( ( ( 1  +  1 )  +  ( N  -  1 ) )  _C  ( N  -  1 ) ) )
29 1cnd 7888 . . . . . . 7  |-  ( N  e.  NN  ->  1  e.  CC )
30 nncn 8835 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  CC )
3129, 29, 30ppncand 8220 . . . . . . 7  |-  ( N  e.  NN  ->  (
( 1  +  1 )  +  ( N  -  1 ) )  =  ( 1  +  N ) )
3229, 30, 31comraddd 8026 . . . . . 6  |-  ( N  e.  NN  ->  (
( 1  +  1 )  +  ( N  -  1 ) )  =  ( N  + 
1 ) )
3332oveq1d 5836 . . . . 5  |-  ( N  e.  NN  ->  (
( ( 1  +  1 )  +  ( N  -  1 ) )  _C  ( N  -  1 ) )  =  ( ( N  +  1 )  _C  ( N  -  1 ) ) )
34 nnnn0 9091 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  NN0 )
35 bcp1m1 10632 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  _C  ( N  - 
1 ) )  =  ( ( ( N  +  1 )  x.  N )  /  2
) )
3634, 35syl 14 . . . . 5  |-  ( N  e.  NN  ->  (
( N  +  1 )  _C  ( N  -  1 ) )  =  ( ( ( N  +  1 )  x.  N )  / 
2 ) )
37 sqval 10470 . . . . . . . . . 10  |-  ( N  e.  CC  ->  ( N ^ 2 )  =  ( N  x.  N
) )
3837eqcomd 2163 . . . . . . . . 9  |-  ( N  e.  CC  ->  ( N  x.  N )  =  ( N ^
2 ) )
39 mulid2 7870 . . . . . . . . 9  |-  ( N  e.  CC  ->  (
1  x.  N )  =  N )
4038, 39oveq12d 5839 . . . . . . . 8  |-  ( N  e.  CC  ->  (
( N  x.  N
)  +  ( 1  x.  N ) )  =  ( ( N ^ 2 )  +  N ) )
4130, 40syl 14 . . . . . . 7  |-  ( N  e.  NN  ->  (
( N  x.  N
)  +  ( 1  x.  N ) )  =  ( ( N ^ 2 )  +  N ) )
4230, 30, 29, 41joinlmuladdmuld 7899 . . . . . 6  |-  ( N  e.  NN  ->  (
( N  +  1 )  x.  N )  =  ( ( N ^ 2 )  +  N ) )
4342oveq1d 5836 . . . . 5  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  x.  N
)  /  2 )  =  ( ( ( N ^ 2 )  +  N )  / 
2 ) )
4433, 36, 433eqtrd 2194 . . . 4  |-  ( N  e.  NN  ->  (
( ( 1  +  1 )  +  ( N  -  1 ) )  _C  ( N  -  1 ) )  =  ( ( ( N ^ 2 )  +  N )  / 
2 ) )
4512, 28, 443eqtrd 2194 . . 3  |-  ( N  e.  NN  ->  sum_ k  e.  ( 1 ... N
) k  =  ( ( ( N ^
2 )  +  N
)  /  2 ) )
46 oveq2 5829 . . . . . . 7  |-  ( N  =  0  ->  (
1 ... N )  =  ( 1 ... 0
) )
47 fz10 9941 . . . . . . 7  |-  ( 1 ... 0 )  =  (/)
4846, 47eqtrdi 2206 . . . . . 6  |-  ( N  =  0  ->  (
1 ... N )  =  (/) )
4948sumeq1d 11256 . . . . 5  |-  ( N  =  0  ->  sum_ k  e.  ( 1 ... N
) k  =  sum_ k  e.  (/)  k )
50 sum0 11278 . . . . 5  |-  sum_ k  e.  (/)  k  =  0
5149, 50eqtrdi 2206 . . . 4  |-  ( N  =  0  ->  sum_ k  e.  ( 1 ... N
) k  =  0 )
52 sq0i 10503 . . . . . . . 8  |-  ( N  =  0  ->  ( N ^ 2 )  =  0 )
53 id 19 . . . . . . . 8  |-  ( N  =  0  ->  N  =  0 )
5452, 53oveq12d 5839 . . . . . . 7  |-  ( N  =  0  ->  (
( N ^ 2 )  +  N )  =  ( 0  +  0 ) )
55 00id 8010 . . . . . . 7  |-  ( 0  +  0 )  =  0
5654, 55eqtrdi 2206 . . . . . 6  |-  ( N  =  0  ->  (
( N ^ 2 )  +  N )  =  0 )
5756oveq1d 5836 . . . . 5  |-  ( N  =  0  ->  (
( ( N ^
2 )  +  N
)  /  2 )  =  ( 0  / 
2 ) )
58 2cn 8898 . . . . . 6  |-  2  e.  CC
59 2ap0 8920 . . . . . 6  |-  2 #  0
6058, 59div0api 8613 . . . . 5  |-  ( 0  /  2 )  =  0
6157, 60eqtrdi 2206 . . . 4  |-  ( N  =  0  ->  (
( ( N ^
2 )  +  N
)  /  2 )  =  0 )
6251, 61eqtr4d 2193 . . 3  |-  ( N  =  0  ->  sum_ k  e.  ( 1 ... N
) k  =  ( ( ( N ^
2 )  +  N
)  /  2 ) )
6345, 62jaoi 706 . 2  |-  ( ( N  e.  NN  \/  N  =  0 )  ->  sum_ k  e.  ( 1 ... N ) k  =  ( ( ( N ^ 2 )  +  N )  /  2 ) )
641, 63sylbi 120 1  |-  ( N  e.  NN0  ->  sum_ k  e.  ( 1 ... N
) k  =  ( ( ( N ^
2 )  +  N
)  /  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 698    = wceq 1335    e. wcel 2128   (/)c0 3394  (class class class)co 5821   CCcc 7724   0cc0 7726   1c1 7727    + caddc 7729    x. cmul 7731    - cmin 8040    / cdiv 8539   NNcn 8827   2c2 8878   NN0cn0 9084   ...cfz 9905   ^cexp 10411    _C cbc 10614   sum_csu 11243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-mulrcl 7825  ax-addcom 7826  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-1rid 7833  ax-0id 7834  ax-rnegex 7835  ax-precex 7836  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-apti 7841  ax-pre-ltadd 7842  ax-pre-mulgt0 7843  ax-pre-mulext 7844  ax-arch 7845  ax-caucvg 7846
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-isom 5178  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-irdg 6314  df-frec 6335  df-1o 6360  df-oadd 6364  df-er 6477  df-en 6683  df-dom 6684  df-fin 6685  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-reap 8444  df-ap 8451  df-div 8540  df-inn 8828  df-2 8886  df-3 8887  df-4 8888  df-n0 9085  df-z 9162  df-uz 9434  df-q 9522  df-rp 9554  df-fz 9906  df-fzo 10035  df-seqfrec 10338  df-exp 10412  df-fac 10593  df-bc 10615  df-ihash 10643  df-cj 10735  df-re 10736  df-im 10737  df-rsqrt 10891  df-abs 10892  df-clim 11169  df-sumdc 11244
This theorem is referenced by:  arisum2  11389
  Copyright terms: Public domain W3C validator