ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metrtri Unicode version

Theorem metrtri 14613
Description: Reverse triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Jim Kingdon, 21-Apr-2023.)
Assertion
Ref Expression
metrtri  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( abs `  ( ( A D C )  -  ( B D C ) ) )  <_  ( A D B ) )

Proof of Theorem metrtri
StepHypRef Expression
1 simpl 109 . . . . 5  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  D  e.  ( Met `  X ) )
2 simpr2 1006 . . . . 5  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  B  e.  X )
3 simpr3 1007 . . . . 5  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  C  e.  X )
4 simpr1 1005 . . . . 5  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  A  e.  X )
5 mettri 14609 . . . . 5  |-  ( ( D  e.  ( Met `  X )  /\  ( B  e.  X  /\  C  e.  X  /\  A  e.  X )
)  ->  ( B D C )  <_  (
( B D A )  +  ( A D C ) ) )
61, 2, 3, 4, 5syl13anc 1251 . . . 4  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( B D C )  <_  (
( B D A )  +  ( A D C ) ) )
7 metcl 14589 . . . . . . 7  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  e.  RR )
81, 4, 2, 7syl3anc 1249 . . . . . 6  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D B )  e.  RR )
98recnd 8055 . . . . 5  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D B )  e.  CC )
10 metcl 14589 . . . . . . 7  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  C  e.  X )  ->  ( A D C )  e.  RR )
111, 4, 3, 10syl3anc 1249 . . . . . 6  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D C )  e.  RR )
1211recnd 8055 . . . . 5  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D C )  e.  CC )
13 metsym 14607 . . . . . . 7  |-  ( ( D  e.  ( Met `  X )  /\  B  e.  X  /\  A  e.  X )  ->  ( B D A )  =  ( A D B ) )
141, 2, 4, 13syl3anc 1249 . . . . . 6  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( B D A )  =  ( A D B ) )
1514oveq1d 5937 . . . . 5  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( B D A )  +  ( A D C ) )  =  ( ( A D B )  +  ( A D C ) ) )
169, 12, 15comraddd 8183 . . . 4  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( B D A )  +  ( A D C ) )  =  ( ( A D C )  +  ( A D B ) ) )
176, 16breqtrd 4059 . . 3  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( B D C )  <_  (
( A D C )  +  ( A D B ) ) )
18 metcl 14589 . . . . 5  |-  ( ( D  e.  ( Met `  X )  /\  B  e.  X  /\  C  e.  X )  ->  ( B D C )  e.  RR )
191, 2, 3, 18syl3anc 1249 . . . 4  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( B D C )  e.  RR )
2019, 8, 11lesubaddd 8569 . . 3  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( (
( B D C )  -  ( A D B ) )  <_  ( A D C )  <->  ( B D C )  <_  (
( A D C )  +  ( A D B ) ) ) )
2117, 20mpbird 167 . 2  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( B D C )  -  ( A D B ) )  <_  ( A D C ) )
22 mettri 14609 . . . 4  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  C  e.  X  /\  B  e.  X )
)  ->  ( A D C )  <_  (
( A D B )  +  ( B D C ) ) )
231, 4, 3, 2, 22syl13anc 1251 . . 3  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D C )  <_  (
( A D B )  +  ( B D C ) ) )
2419recnd 8055 . . . 4  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( B D C )  e.  CC )
259, 24addcomd 8177 . . 3  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D B )  +  ( B D C ) )  =  ( ( B D C )  +  ( A D B ) ) )
2623, 25breqtrd 4059 . 2  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D C )  <_  (
( B D C )  +  ( A D B ) ) )
2711, 19, 8absdifled 11344 . 2  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( abs `  ( ( A D C )  -  ( B D C ) ) )  <_  ( A D B )  <->  ( (
( B D C )  -  ( A D B ) )  <_  ( A D C )  /\  ( A D C )  <_ 
( ( B D C )  +  ( A D B ) ) ) ) )
2821, 26, 27mpbir2and 946 1  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( abs `  ( ( A D C )  -  ( B D C ) ) )  <_  ( A D B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   RRcr 7878    + caddc 7882    <_ cle 8062    - cmin 8197   abscabs 11162   Metcmet 14093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-map 6709  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-rp 9729  df-xadd 9848  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-xmet 14100  df-met 14101
This theorem is referenced by:  msrtri  14712
  Copyright terms: Public domain W3C validator