ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metrtri Unicode version

Theorem metrtri 12918
Description: Reverse triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Jim Kingdon, 21-Apr-2023.)
Assertion
Ref Expression
metrtri  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( abs `  ( ( A D C )  -  ( B D C ) ) )  <_  ( A D B ) )

Proof of Theorem metrtri
StepHypRef Expression
1 simpl 108 . . . . 5  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  D  e.  ( Met `  X ) )
2 simpr2 993 . . . . 5  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  B  e.  X )
3 simpr3 994 . . . . 5  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  C  e.  X )
4 simpr1 992 . . . . 5  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  A  e.  X )
5 mettri 12914 . . . . 5  |-  ( ( D  e.  ( Met `  X )  /\  ( B  e.  X  /\  C  e.  X  /\  A  e.  X )
)  ->  ( B D C )  <_  (
( B D A )  +  ( A D C ) ) )
61, 2, 3, 4, 5syl13anc 1229 . . . 4  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( B D C )  <_  (
( B D A )  +  ( A D C ) ) )
7 metcl 12894 . . . . . . 7  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  e.  RR )
81, 4, 2, 7syl3anc 1227 . . . . . 6  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D B )  e.  RR )
98recnd 7918 . . . . 5  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D B )  e.  CC )
10 metcl 12894 . . . . . . 7  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  C  e.  X )  ->  ( A D C )  e.  RR )
111, 4, 3, 10syl3anc 1227 . . . . . 6  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D C )  e.  RR )
1211recnd 7918 . . . . 5  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D C )  e.  CC )
13 metsym 12912 . . . . . . 7  |-  ( ( D  e.  ( Met `  X )  /\  B  e.  X  /\  A  e.  X )  ->  ( B D A )  =  ( A D B ) )
141, 2, 4, 13syl3anc 1227 . . . . . 6  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( B D A )  =  ( A D B ) )
1514oveq1d 5851 . . . . 5  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( B D A )  +  ( A D C ) )  =  ( ( A D B )  +  ( A D C ) ) )
169, 12, 15comraddd 8046 . . . 4  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( B D A )  +  ( A D C ) )  =  ( ( A D C )  +  ( A D B ) ) )
176, 16breqtrd 4002 . . 3  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( B D C )  <_  (
( A D C )  +  ( A D B ) ) )
18 metcl 12894 . . . . 5  |-  ( ( D  e.  ( Met `  X )  /\  B  e.  X  /\  C  e.  X )  ->  ( B D C )  e.  RR )
191, 2, 3, 18syl3anc 1227 . . . 4  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( B D C )  e.  RR )
2019, 8, 11lesubaddd 8431 . . 3  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( (
( B D C )  -  ( A D B ) )  <_  ( A D C )  <->  ( B D C )  <_  (
( A D C )  +  ( A D B ) ) ) )
2117, 20mpbird 166 . 2  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( B D C )  -  ( A D B ) )  <_  ( A D C ) )
22 mettri 12914 . . . 4  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  C  e.  X  /\  B  e.  X )
)  ->  ( A D C )  <_  (
( A D B )  +  ( B D C ) ) )
231, 4, 3, 2, 22syl13anc 1229 . . 3  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D C )  <_  (
( A D B )  +  ( B D C ) ) )
2419recnd 7918 . . . 4  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( B D C )  e.  CC )
259, 24addcomd 8040 . . 3  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D B )  +  ( B D C ) )  =  ( ( B D C )  +  ( A D B ) ) )
2623, 25breqtrd 4002 . 2  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D C )  <_  (
( B D C )  +  ( A D B ) ) )
2711, 19, 8absdifled 11107 . 2  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( abs `  ( ( A D C )  -  ( B D C ) ) )  <_  ( A D B )  <->  ( (
( B D C )  -  ( A D B ) )  <_  ( A D C )  /\  ( A D C )  <_ 
( ( B D C )  +  ( A D B ) ) ) ) )
2821, 26, 27mpbir2and 933 1  |-  ( ( D  e.  ( Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( abs `  ( ( A D C )  -  ( B D C ) ) )  <_  ( A D B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 967    = wceq 1342    e. wcel 2135   class class class wbr 3976   ` cfv 5182  (class class class)co 5836   RRcr 7743    + caddc 7747    <_ cle 7925    - cmin 8060   abscabs 10925   Metcmet 12522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863  ax-caucvg 7864
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-map 6607  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-3 8908  df-4 8909  df-n0 9106  df-z 9183  df-uz 9458  df-rp 9581  df-xadd 9700  df-seqfrec 10371  df-exp 10445  df-cj 10770  df-re 10771  df-im 10772  df-rsqrt 10926  df-abs 10927  df-xmet 12529  df-met 12530
This theorem is referenced by:  msrtri  13017
  Copyright terms: Public domain W3C validator