Proof of Theorem apdifflemr
| Step | Hyp | Ref
| Expression |
| 1 | | 2cnd 9080 |
. . . . 5
   |
| 2 | | apdifflemr.a |
. . . . . 6
   |
| 3 | 2 | recnd 8072 |
. . . . 5
   |
| 4 | 3 | 2timesd 9251 |
. . . . . 6
       |
| 5 | | apdifflemr.1 |
. . . . . . . . . . . 12
    
   #    
    |
| 6 | | 1cnd 8059 |
. . . . . . . . . . . . . 14
   |
| 7 | 3, 6 | subnegd 8361 |
. . . . . . . . . . . . . 14
        |
| 8 | 3, 6, 7 | comraddd 8200 |
. . . . . . . . . . . . 13
        |
| 9 | 8 | fveq2d 5565 |
. . . . . . . . . . . 12
    
           |
| 10 | 3, 6 | abssubd 11375 |
. . . . . . . . . . . 12
    
          |
| 11 | 5, 9, 10 | 3brtr3d 4065 |
. . . . . . . . . . 11
       #         |
| 12 | 6, 3 | addcld 8063 |
. . . . . . . . . . . 12
     |
| 13 | 6, 3 | subcld 8354 |
. . . . . . . . . . . 12
     |
| 14 | | absext 11245 |
. . . . . . . . . . . 12
              #         #      |
| 15 | 12, 13, 14 | syl2anc 411 |
. . . . . . . . . . 11
        #      
  #      |
| 16 | 11, 15 | mpd 13 |
. . . . . . . . . 10
   #     |
| 17 | 6, 3 | negsubd 8360 |
. . . . . . . . . 10
        |
| 18 | 16, 17 | breqtrrd 4062 |
. . . . . . . . 9
   #      |
| 19 | 3 | negcld 8341 |
. . . . . . . . . 10
    |
| 20 | | apadd2 8653 |
. . . . . . . . . 10
  
  #    #       |
| 21 | 3, 19, 6, 20 | syl3anc 1249 |
. . . . . . . . 9
  #    #       |
| 22 | 18, 21 | mpbird 167 |
. . . . . . . 8
 #    |
| 23 | | apadd2 8653 |
. . . . . . . . 9
  
  #    #       |
| 24 | 3, 19, 3, 23 | syl3anc 1249 |
. . . . . . . 8
  #    #       |
| 25 | 22, 24 | mpbid 147 |
. . . . . . 7
   #      |
| 26 | 3 | negidd 8344 |
. . . . . . 7
      |
| 27 | 25, 26 | breqtrd 4060 |
. . . . . 6
   #   |
| 28 | 4, 27 | eqbrtrd 4056 |
. . . . 5
   #   |
| 29 | 1, 3, 28 | mulap0bbd 8704 |
. . . 4
 #   |
| 30 | 29 | adantr 276 |
. . 3
 
 #   |
| 31 | | simpr 110 |
. . 3
 
   |
| 32 | 30, 31 | breqtrrd 4062 |
. 2
 
 #   |
| 33 | 4 | adantr 276 |
. . . 4
 
       |
| 34 | | apdifflemr.as |
. . . . . . . 8
 
       #           |
| 35 | 3 | subid1d 8343 |
. . . . . . . . . . 11
     |
| 36 | 35 | fveq2d 5565 |
. . . . . . . . . 10
    
        |
| 37 | | 2z 9371 |
. . . . . . . . . . . . . . 15
 |
| 38 | | zq 9717 |
. . . . . . . . . . . . . . 15
   |
| 39 | 37, 38 | ax-mp 5 |
. . . . . . . . . . . . . 14
 |
| 40 | 39 | a1i 9 |
. . . . . . . . . . . . 13
   |
| 41 | | apdifflemr.s |
. . . . . . . . . . . . 13
   |
| 42 | | qmulcl 9728 |
. . . . . . . . . . . . 13
 
     |
| 43 | 40, 41, 42 | syl2anc 411 |
. . . . . . . . . . . 12
     |
| 44 | | qcn 9725 |
. . . . . . . . . . . 12
       |
| 45 | 43, 44 | syl 14 |
. . . . . . . . . . 11
     |
| 46 | 3, 45 | abssubd 11375 |
. . . . . . . . . 10
    
              |
| 47 | 36, 46 | breq12d 4047 |
. . . . . . . . 9
     
  #    
        #            |
| 48 | 47 | adantr 276 |
. . . . . . . 8
 
     
  #    
        #            |
| 49 | 34, 48 | mpbid 147 |
. . . . . . 7
 
     #           |
| 50 | 3 | adantr 276 |
. . . . . . . 8
 
   |
| 51 | 45, 3 | subcld 8354 |
. . . . . . . . 9
       |
| 52 | 51 | adantr 276 |
. . . . . . . 8
 
       |
| 53 | | absext 11245 |
. . . . . . . 8
            #         #        |
| 54 | 50, 52, 53 | syl2anc 411 |
. . . . . . 7
 
      #        
#        |
| 55 | 49, 54 | mpd 13 |
. . . . . 6
 
 #       |
| 56 | | apadd2 8653 |
. . . . . . 7
     
  #    
  #          |
| 57 | 50, 52, 50, 56 | syl3anc 1249 |
. . . . . 6
 
  #       #
         |
| 58 | 55, 57 | mpbid 147 |
. . . . 5
 
 
 # 
       |
| 59 | 45 | adantr 276 |
. . . . . 6
 
     |
| 60 | 50, 59 | pncan3d 8357 |
. . . . 5
 
 
         |
| 61 | 58, 60 | breqtrd 4060 |
. . . 4
 
 
 #     |
| 62 | 33, 61 | eqbrtrd 4056 |
. . 3
 
   #     |
| 63 | | qcn 9725 |
. . . . . 6
   |
| 64 | 41, 63 | syl 14 |
. . . . 5
   |
| 65 | 64 | adantr 276 |
. . . 4
 
   |
| 66 | | 2cnd 9080 |
. . . 4
 
   |
| 67 | | 2ap0 9100 |
. . . . 5
#  |
| 68 | 67 | a1i 9 |
. . . 4
 
 #   |
| 69 | | apmul2 8833 |
. . . 4
 
 #    #
  #      |
| 70 | 50, 65, 66, 68, 69 | syl112anc 1253 |
. . 3
 
  #
  #      |
| 71 | 62, 70 | mpbird 167 |
. 2
 
 #   |
| 72 | | 0z 9354 |
. . . . . 6
 |
| 73 | | zq 9717 |
. . . . . 6
   |
| 74 | 72, 73 | ax-mp 5 |
. . . . 5
 |
| 75 | | qdceq 10351 |
. . . . 5
 
 DECID   |
| 76 | 41, 74, 75 | sylancl 413 |
. . . 4
 DECID   |
| 77 | | exmiddc 837 |
. . . 4
DECID

   |
| 78 | 76, 77 | syl 14 |
. . 3
     |
| 79 | | df-ne 2368 |
. . . 4

  |
| 80 | 79 | orbi2i 763 |
. . 3
       |
| 81 | 78, 80 | sylibr 134 |
. 2
     |
| 82 | 32, 71, 81 | mpjaodan 799 |
1
 #   |