Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  apdifflemr Unicode version

Theorem apdifflemr 16346
Description: Lemma for apdiff 16347. (Contributed by Jim Kingdon, 19-May-2024.)
Hypotheses
Ref Expression
apdifflemr.a  |-  ( ph  ->  A  e.  RR )
apdifflemr.s  |-  ( ph  ->  S  e.  QQ )
apdifflemr.1  |-  ( ph  ->  ( abs `  ( A  -  -u 1 ) ) #  ( abs `  ( A  -  1 ) ) )
apdifflemr.as  |-  ( (
ph  /\  S  =/=  0 )  ->  ( abs `  ( A  - 
0 ) ) #  ( abs `  ( A  -  ( 2  x.  S ) ) ) )
Assertion
Ref Expression
apdifflemr  |-  ( ph  ->  A #  S )

Proof of Theorem apdifflemr
StepHypRef Expression
1 2cnd 9171 . . . . 5  |-  ( ph  ->  2  e.  CC )
2 apdifflemr.a . . . . . 6  |-  ( ph  ->  A  e.  RR )
32recnd 8163 . . . . 5  |-  ( ph  ->  A  e.  CC )
432timesd 9342 . . . . . 6  |-  ( ph  ->  ( 2  x.  A
)  =  ( A  +  A ) )
5 apdifflemr.1 . . . . . . . . . . . 12  |-  ( ph  ->  ( abs `  ( A  -  -u 1 ) ) #  ( abs `  ( A  -  1 ) ) )
6 1cnd 8150 . . . . . . . . . . . . . 14  |-  ( ph  ->  1  e.  CC )
73, 6subnegd 8452 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A  -  -u 1
)  =  ( A  +  1 ) )
83, 6, 7comraddd 8291 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  -  -u 1
)  =  ( 1  +  A ) )
98fveq2d 5627 . . . . . . . . . . . 12  |-  ( ph  ->  ( abs `  ( A  -  -u 1 ) )  =  ( abs `  ( 1  +  A
) ) )
103, 6abssubd 11690 . . . . . . . . . . . 12  |-  ( ph  ->  ( abs `  ( A  -  1 ) )  =  ( abs `  ( 1  -  A
) ) )
115, 9, 103brtr3d 4113 . . . . . . . . . . 11  |-  ( ph  ->  ( abs `  (
1  +  A ) ) #  ( abs `  (
1  -  A ) ) )
126, 3addcld 8154 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1  +  A
)  e.  CC )
136, 3subcld 8445 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1  -  A
)  e.  CC )
14 absext 11560 . . . . . . . . . . . 12  |-  ( ( ( 1  +  A
)  e.  CC  /\  ( 1  -  A
)  e.  CC )  ->  ( ( abs `  ( 1  +  A
) ) #  ( abs `  ( 1  -  A
) )  ->  (
1  +  A ) #  ( 1  -  A
) ) )
1512, 13, 14syl2anc 411 . . . . . . . . . . 11  |-  ( ph  ->  ( ( abs `  (
1  +  A ) ) #  ( abs `  (
1  -  A ) )  ->  ( 1  +  A ) #  ( 1  -  A ) ) )
1611, 15mpd 13 . . . . . . . . . 10  |-  ( ph  ->  ( 1  +  A
) #  ( 1  -  A ) )
176, 3negsubd 8451 . . . . . . . . . 10  |-  ( ph  ->  ( 1  +  -u A )  =  ( 1  -  A ) )
1816, 17breqtrrd 4110 . . . . . . . . 9  |-  ( ph  ->  ( 1  +  A
) #  ( 1  + 
-u A ) )
193negcld 8432 . . . . . . . . . 10  |-  ( ph  -> 
-u A  e.  CC )
20 apadd2 8744 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  -u A  e.  CC  /\  1  e.  CC )  ->  ( A #  -u A  <->  ( 1  +  A ) #  ( 1  +  -u A ) ) )
213, 19, 6, 20syl3anc 1271 . . . . . . . . 9  |-  ( ph  ->  ( A #  -u A  <->  ( 1  +  A ) #  ( 1  +  -u A ) ) )
2218, 21mpbird 167 . . . . . . . 8  |-  ( ph  ->  A #  -u A )
23 apadd2 8744 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  -u A  e.  CC  /\  A  e.  CC )  ->  ( A #  -u A  <->  ( A  +  A ) #  ( A  +  -u A ) ) )
243, 19, 3, 23syl3anc 1271 . . . . . . . 8  |-  ( ph  ->  ( A #  -u A  <->  ( A  +  A ) #  ( A  +  -u A ) ) )
2522, 24mpbid 147 . . . . . . 7  |-  ( ph  ->  ( A  +  A
) #  ( A  +  -u A ) )
263negidd 8435 . . . . . . 7  |-  ( ph  ->  ( A  +  -u A )  =  0 )
2725, 26breqtrd 4108 . . . . . 6  |-  ( ph  ->  ( A  +  A
) #  0 )
284, 27eqbrtrd 4104 . . . . 5  |-  ( ph  ->  ( 2  x.  A
) #  0 )
291, 3, 28mulap0bbd 8795 . . . 4  |-  ( ph  ->  A #  0 )
3029adantr 276 . . 3  |-  ( (
ph  /\  S  = 
0 )  ->  A #  0 )
31 simpr 110 . . 3  |-  ( (
ph  /\  S  = 
0 )  ->  S  =  0 )
3230, 31breqtrrd 4110 . 2  |-  ( (
ph  /\  S  = 
0 )  ->  A #  S )
334adantr 276 . . . 4  |-  ( (
ph  /\  S  =/=  0 )  ->  (
2  x.  A )  =  ( A  +  A ) )
34 apdifflemr.as . . . . . . . 8  |-  ( (
ph  /\  S  =/=  0 )  ->  ( abs `  ( A  - 
0 ) ) #  ( abs `  ( A  -  ( 2  x.  S ) ) ) )
353subid1d 8434 . . . . . . . . . . 11  |-  ( ph  ->  ( A  -  0 )  =  A )
3635fveq2d 5627 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  ( A  -  0 ) )  =  ( abs `  A ) )
37 2z 9462 . . . . . . . . . . . . . . 15  |-  2  e.  ZZ
38 zq 9809 . . . . . . . . . . . . . . 15  |-  ( 2  e.  ZZ  ->  2  e.  QQ )
3937, 38ax-mp 5 . . . . . . . . . . . . . 14  |-  2  e.  QQ
4039a1i 9 . . . . . . . . . . . . 13  |-  ( ph  ->  2  e.  QQ )
41 apdifflemr.s . . . . . . . . . . . . 13  |-  ( ph  ->  S  e.  QQ )
42 qmulcl 9820 . . . . . . . . . . . . 13  |-  ( ( 2  e.  QQ  /\  S  e.  QQ )  ->  ( 2  x.  S
)  e.  QQ )
4340, 41, 42syl2anc 411 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2  x.  S
)  e.  QQ )
44 qcn 9817 . . . . . . . . . . . 12  |-  ( ( 2  x.  S )  e.  QQ  ->  (
2  x.  S )  e.  CC )
4543, 44syl 14 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  S
)  e.  CC )
463, 45abssubd 11690 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  ( A  -  ( 2  x.  S ) ) )  =  ( abs `  ( ( 2  x.  S )  -  A
) ) )
4736, 46breq12d 4095 . . . . . . . . 9  |-  ( ph  ->  ( ( abs `  ( A  -  0 ) ) #  ( abs `  ( A  -  ( 2  x.  S ) ) )  <->  ( abs `  A
) #  ( abs `  (
( 2  x.  S
)  -  A ) ) ) )
4847adantr 276 . . . . . . . 8  |-  ( (
ph  /\  S  =/=  0 )  ->  (
( abs `  ( A  -  0 ) ) #  ( abs `  ( A  -  ( 2  x.  S ) ) )  <->  ( abs `  A
) #  ( abs `  (
( 2  x.  S
)  -  A ) ) ) )
4934, 48mpbid 147 . . . . . . 7  |-  ( (
ph  /\  S  =/=  0 )  ->  ( abs `  A ) #  ( abs `  ( ( 2  x.  S )  -  A ) ) )
503adantr 276 . . . . . . . 8  |-  ( (
ph  /\  S  =/=  0 )  ->  A  e.  CC )
5145, 3subcld 8445 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  S )  -  A
)  e.  CC )
5251adantr 276 . . . . . . . 8  |-  ( (
ph  /\  S  =/=  0 )  ->  (
( 2  x.  S
)  -  A )  e.  CC )
53 absext 11560 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( ( 2  x.  S )  -  A
)  e.  CC )  ->  ( ( abs `  A ) #  ( abs `  ( ( 2  x.  S )  -  A
) )  ->  A #  ( ( 2  x.  S )  -  A
) ) )
5450, 52, 53syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  S  =/=  0 )  ->  (
( abs `  A
) #  ( abs `  (
( 2  x.  S
)  -  A ) )  ->  A #  (
( 2  x.  S
)  -  A ) ) )
5549, 54mpd 13 . . . . . 6  |-  ( (
ph  /\  S  =/=  0 )  ->  A #  ( ( 2  x.  S )  -  A
) )
56 apadd2 8744 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( ( 2  x.  S )  -  A
)  e.  CC  /\  A  e.  CC )  ->  ( A #  ( ( 2  x.  S )  -  A )  <->  ( A  +  A ) #  ( A  +  ( ( 2  x.  S )  -  A ) ) ) )
5750, 52, 50, 56syl3anc 1271 . . . . . 6  |-  ( (
ph  /\  S  =/=  0 )  ->  ( A #  ( ( 2  x.  S )  -  A
)  <->  ( A  +  A ) #  ( A  +  ( ( 2  x.  S )  -  A ) ) ) )
5855, 57mpbid 147 . . . . 5  |-  ( (
ph  /\  S  =/=  0 )  ->  ( A  +  A ) #  ( A  +  (
( 2  x.  S
)  -  A ) ) )
5945adantr 276 . . . . . 6  |-  ( (
ph  /\  S  =/=  0 )  ->  (
2  x.  S )  e.  CC )
6050, 59pncan3d 8448 . . . . 5  |-  ( (
ph  /\  S  =/=  0 )  ->  ( A  +  ( (
2  x.  S )  -  A ) )  =  ( 2  x.  S ) )
6158, 60breqtrd 4108 . . . 4  |-  ( (
ph  /\  S  =/=  0 )  ->  ( A  +  A ) #  ( 2  x.  S
) )
6233, 61eqbrtrd 4104 . . 3  |-  ( (
ph  /\  S  =/=  0 )  ->  (
2  x.  A ) #  ( 2  x.  S
) )
63 qcn 9817 . . . . . 6  |-  ( S  e.  QQ  ->  S  e.  CC )
6441, 63syl 14 . . . . 5  |-  ( ph  ->  S  e.  CC )
6564adantr 276 . . . 4  |-  ( (
ph  /\  S  =/=  0 )  ->  S  e.  CC )
66 2cnd 9171 . . . 4  |-  ( (
ph  /\  S  =/=  0 )  ->  2  e.  CC )
67 2ap0 9191 . . . . 5  |-  2 #  0
6867a1i 9 . . . 4  |-  ( (
ph  /\  S  =/=  0 )  ->  2 #  0 )
69 apmul2 8924 . . . 4  |-  ( ( A  e.  CC  /\  S  e.  CC  /\  (
2  e.  CC  /\  2 #  0 ) )  -> 
( A #  S  <->  ( 2  x.  A ) #  ( 2  x.  S ) ) )
7050, 65, 66, 68, 69syl112anc 1275 . . 3  |-  ( (
ph  /\  S  =/=  0 )  ->  ( A #  S  <->  ( 2  x.  A ) #  ( 2  x.  S ) ) )
7162, 70mpbird 167 . 2  |-  ( (
ph  /\  S  =/=  0 )  ->  A #  S )
72 0z 9445 . . . . . 6  |-  0  e.  ZZ
73 zq 9809 . . . . . 6  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
7472, 73ax-mp 5 . . . . 5  |-  0  e.  QQ
75 qdceq 10451 . . . . 5  |-  ( ( S  e.  QQ  /\  0  e.  QQ )  -> DECID  S  =  0 )
7641, 74, 75sylancl 413 . . . 4  |-  ( ph  -> DECID  S  =  0 )
77 exmiddc 841 . . . 4  |-  (DECID  S  =  0  ->  ( S  =  0  \/  -.  S  =  0 ) )
7876, 77syl 14 . . 3  |-  ( ph  ->  ( S  =  0  \/  -.  S  =  0 ) )
79 df-ne 2401 . . . 4  |-  ( S  =/=  0  <->  -.  S  =  0 )
8079orbi2i 767 . . 3  |-  ( ( S  =  0  \/  S  =/=  0 )  <-> 
( S  =  0  \/  -.  S  =  0 ) )
8178, 80sylibr 134 . 2  |-  ( ph  ->  ( S  =  0  \/  S  =/=  0
) )
8232, 71, 81mpjaodan 803 1  |-  ( ph  ->  A #  S )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    = wceq 1395    e. wcel 2200    =/= wne 2400   class class class wbr 4082   ` cfv 5314  (class class class)co 5994   CCcc 7985   RRcr 7986   0cc0 7987   1c1 7988    + caddc 7990    x. cmul 7992    - cmin 8305   -ucneg 8306   # cap 8716   2c2 9149   ZZcz 9434   QQcq 9802   abscabs 11494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-seqfrec 10657  df-exp 10748  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496
This theorem is referenced by:  apdiff  16347
  Copyright terms: Public domain W3C validator