Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  apdifflemr Unicode version

Theorem apdifflemr 15607
Description: Lemma for apdiff 15608. (Contributed by Jim Kingdon, 19-May-2024.)
Hypotheses
Ref Expression
apdifflemr.a  |-  ( ph  ->  A  e.  RR )
apdifflemr.s  |-  ( ph  ->  S  e.  QQ )
apdifflemr.1  |-  ( ph  ->  ( abs `  ( A  -  -u 1 ) ) #  ( abs `  ( A  -  1 ) ) )
apdifflemr.as  |-  ( (
ph  /\  S  =/=  0 )  ->  ( abs `  ( A  - 
0 ) ) #  ( abs `  ( A  -  ( 2  x.  S ) ) ) )
Assertion
Ref Expression
apdifflemr  |-  ( ph  ->  A #  S )

Proof of Theorem apdifflemr
StepHypRef Expression
1 2cnd 9057 . . . . 5  |-  ( ph  ->  2  e.  CC )
2 apdifflemr.a . . . . . 6  |-  ( ph  ->  A  e.  RR )
32recnd 8050 . . . . 5  |-  ( ph  ->  A  e.  CC )
432timesd 9228 . . . . . 6  |-  ( ph  ->  ( 2  x.  A
)  =  ( A  +  A ) )
5 apdifflemr.1 . . . . . . . . . . . 12  |-  ( ph  ->  ( abs `  ( A  -  -u 1 ) ) #  ( abs `  ( A  -  1 ) ) )
6 1cnd 8037 . . . . . . . . . . . . . 14  |-  ( ph  ->  1  e.  CC )
73, 6subnegd 8339 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A  -  -u 1
)  =  ( A  +  1 ) )
83, 6, 7comraddd 8178 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  -  -u 1
)  =  ( 1  +  A ) )
98fveq2d 5559 . . . . . . . . . . . 12  |-  ( ph  ->  ( abs `  ( A  -  -u 1 ) )  =  ( abs `  ( 1  +  A
) ) )
103, 6abssubd 11340 . . . . . . . . . . . 12  |-  ( ph  ->  ( abs `  ( A  -  1 ) )  =  ( abs `  ( 1  -  A
) ) )
115, 9, 103brtr3d 4061 . . . . . . . . . . 11  |-  ( ph  ->  ( abs `  (
1  +  A ) ) #  ( abs `  (
1  -  A ) ) )
126, 3addcld 8041 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1  +  A
)  e.  CC )
136, 3subcld 8332 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1  -  A
)  e.  CC )
14 absext 11210 . . . . . . . . . . . 12  |-  ( ( ( 1  +  A
)  e.  CC  /\  ( 1  -  A
)  e.  CC )  ->  ( ( abs `  ( 1  +  A
) ) #  ( abs `  ( 1  -  A
) )  ->  (
1  +  A ) #  ( 1  -  A
) ) )
1512, 13, 14syl2anc 411 . . . . . . . . . . 11  |-  ( ph  ->  ( ( abs `  (
1  +  A ) ) #  ( abs `  (
1  -  A ) )  ->  ( 1  +  A ) #  ( 1  -  A ) ) )
1611, 15mpd 13 . . . . . . . . . 10  |-  ( ph  ->  ( 1  +  A
) #  ( 1  -  A ) )
176, 3negsubd 8338 . . . . . . . . . 10  |-  ( ph  ->  ( 1  +  -u A )  =  ( 1  -  A ) )
1816, 17breqtrrd 4058 . . . . . . . . 9  |-  ( ph  ->  ( 1  +  A
) #  ( 1  + 
-u A ) )
193negcld 8319 . . . . . . . . . 10  |-  ( ph  -> 
-u A  e.  CC )
20 apadd2 8630 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  -u A  e.  CC  /\  1  e.  CC )  ->  ( A #  -u A  <->  ( 1  +  A ) #  ( 1  +  -u A ) ) )
213, 19, 6, 20syl3anc 1249 . . . . . . . . 9  |-  ( ph  ->  ( A #  -u A  <->  ( 1  +  A ) #  ( 1  +  -u A ) ) )
2218, 21mpbird 167 . . . . . . . 8  |-  ( ph  ->  A #  -u A )
23 apadd2 8630 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  -u A  e.  CC  /\  A  e.  CC )  ->  ( A #  -u A  <->  ( A  +  A ) #  ( A  +  -u A ) ) )
243, 19, 3, 23syl3anc 1249 . . . . . . . 8  |-  ( ph  ->  ( A #  -u A  <->  ( A  +  A ) #  ( A  +  -u A ) ) )
2522, 24mpbid 147 . . . . . . 7  |-  ( ph  ->  ( A  +  A
) #  ( A  +  -u A ) )
263negidd 8322 . . . . . . 7  |-  ( ph  ->  ( A  +  -u A )  =  0 )
2725, 26breqtrd 4056 . . . . . 6  |-  ( ph  ->  ( A  +  A
) #  0 )
284, 27eqbrtrd 4052 . . . . 5  |-  ( ph  ->  ( 2  x.  A
) #  0 )
291, 3, 28mulap0bbd 8681 . . . 4  |-  ( ph  ->  A #  0 )
3029adantr 276 . . 3  |-  ( (
ph  /\  S  = 
0 )  ->  A #  0 )
31 simpr 110 . . 3  |-  ( (
ph  /\  S  = 
0 )  ->  S  =  0 )
3230, 31breqtrrd 4058 . 2  |-  ( (
ph  /\  S  = 
0 )  ->  A #  S )
334adantr 276 . . . 4  |-  ( (
ph  /\  S  =/=  0 )  ->  (
2  x.  A )  =  ( A  +  A ) )
34 apdifflemr.as . . . . . . . 8  |-  ( (
ph  /\  S  =/=  0 )  ->  ( abs `  ( A  - 
0 ) ) #  ( abs `  ( A  -  ( 2  x.  S ) ) ) )
353subid1d 8321 . . . . . . . . . . 11  |-  ( ph  ->  ( A  -  0 )  =  A )
3635fveq2d 5559 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  ( A  -  0 ) )  =  ( abs `  A ) )
37 2z 9348 . . . . . . . . . . . . . . 15  |-  2  e.  ZZ
38 zq 9694 . . . . . . . . . . . . . . 15  |-  ( 2  e.  ZZ  ->  2  e.  QQ )
3937, 38ax-mp 5 . . . . . . . . . . . . . 14  |-  2  e.  QQ
4039a1i 9 . . . . . . . . . . . . 13  |-  ( ph  ->  2  e.  QQ )
41 apdifflemr.s . . . . . . . . . . . . 13  |-  ( ph  ->  S  e.  QQ )
42 qmulcl 9705 . . . . . . . . . . . . 13  |-  ( ( 2  e.  QQ  /\  S  e.  QQ )  ->  ( 2  x.  S
)  e.  QQ )
4340, 41, 42syl2anc 411 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2  x.  S
)  e.  QQ )
44 qcn 9702 . . . . . . . . . . . 12  |-  ( ( 2  x.  S )  e.  QQ  ->  (
2  x.  S )  e.  CC )
4543, 44syl 14 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  S
)  e.  CC )
463, 45abssubd 11340 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  ( A  -  ( 2  x.  S ) ) )  =  ( abs `  ( ( 2  x.  S )  -  A
) ) )
4736, 46breq12d 4043 . . . . . . . . 9  |-  ( ph  ->  ( ( abs `  ( A  -  0 ) ) #  ( abs `  ( A  -  ( 2  x.  S ) ) )  <->  ( abs `  A
) #  ( abs `  (
( 2  x.  S
)  -  A ) ) ) )
4847adantr 276 . . . . . . . 8  |-  ( (
ph  /\  S  =/=  0 )  ->  (
( abs `  ( A  -  0 ) ) #  ( abs `  ( A  -  ( 2  x.  S ) ) )  <->  ( abs `  A
) #  ( abs `  (
( 2  x.  S
)  -  A ) ) ) )
4934, 48mpbid 147 . . . . . . 7  |-  ( (
ph  /\  S  =/=  0 )  ->  ( abs `  A ) #  ( abs `  ( ( 2  x.  S )  -  A ) ) )
503adantr 276 . . . . . . . 8  |-  ( (
ph  /\  S  =/=  0 )  ->  A  e.  CC )
5145, 3subcld 8332 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  S )  -  A
)  e.  CC )
5251adantr 276 . . . . . . . 8  |-  ( (
ph  /\  S  =/=  0 )  ->  (
( 2  x.  S
)  -  A )  e.  CC )
53 absext 11210 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( ( 2  x.  S )  -  A
)  e.  CC )  ->  ( ( abs `  A ) #  ( abs `  ( ( 2  x.  S )  -  A
) )  ->  A #  ( ( 2  x.  S )  -  A
) ) )
5450, 52, 53syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  S  =/=  0 )  ->  (
( abs `  A
) #  ( abs `  (
( 2  x.  S
)  -  A ) )  ->  A #  (
( 2  x.  S
)  -  A ) ) )
5549, 54mpd 13 . . . . . 6  |-  ( (
ph  /\  S  =/=  0 )  ->  A #  ( ( 2  x.  S )  -  A
) )
56 apadd2 8630 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( ( 2  x.  S )  -  A
)  e.  CC  /\  A  e.  CC )  ->  ( A #  ( ( 2  x.  S )  -  A )  <->  ( A  +  A ) #  ( A  +  ( ( 2  x.  S )  -  A ) ) ) )
5750, 52, 50, 56syl3anc 1249 . . . . . 6  |-  ( (
ph  /\  S  =/=  0 )  ->  ( A #  ( ( 2  x.  S )  -  A
)  <->  ( A  +  A ) #  ( A  +  ( ( 2  x.  S )  -  A ) ) ) )
5855, 57mpbid 147 . . . . 5  |-  ( (
ph  /\  S  =/=  0 )  ->  ( A  +  A ) #  ( A  +  (
( 2  x.  S
)  -  A ) ) )
5945adantr 276 . . . . . 6  |-  ( (
ph  /\  S  =/=  0 )  ->  (
2  x.  S )  e.  CC )
6050, 59pncan3d 8335 . . . . 5  |-  ( (
ph  /\  S  =/=  0 )  ->  ( A  +  ( (
2  x.  S )  -  A ) )  =  ( 2  x.  S ) )
6158, 60breqtrd 4056 . . . 4  |-  ( (
ph  /\  S  =/=  0 )  ->  ( A  +  A ) #  ( 2  x.  S
) )
6233, 61eqbrtrd 4052 . . 3  |-  ( (
ph  /\  S  =/=  0 )  ->  (
2  x.  A ) #  ( 2  x.  S
) )
63 qcn 9702 . . . . . 6  |-  ( S  e.  QQ  ->  S  e.  CC )
6441, 63syl 14 . . . . 5  |-  ( ph  ->  S  e.  CC )
6564adantr 276 . . . 4  |-  ( (
ph  /\  S  =/=  0 )  ->  S  e.  CC )
66 2cnd 9057 . . . 4  |-  ( (
ph  /\  S  =/=  0 )  ->  2  e.  CC )
67 2ap0 9077 . . . . 5  |-  2 #  0
6867a1i 9 . . . 4  |-  ( (
ph  /\  S  =/=  0 )  ->  2 #  0 )
69 apmul2 8810 . . . 4  |-  ( ( A  e.  CC  /\  S  e.  CC  /\  (
2  e.  CC  /\  2 #  0 ) )  -> 
( A #  S  <->  ( 2  x.  A ) #  ( 2  x.  S ) ) )
7050, 65, 66, 68, 69syl112anc 1253 . . 3  |-  ( (
ph  /\  S  =/=  0 )  ->  ( A #  S  <->  ( 2  x.  A ) #  ( 2  x.  S ) ) )
7162, 70mpbird 167 . 2  |-  ( (
ph  /\  S  =/=  0 )  ->  A #  S )
72 0z 9331 . . . . . 6  |-  0  e.  ZZ
73 zq 9694 . . . . . 6  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
7472, 73ax-mp 5 . . . . 5  |-  0  e.  QQ
75 qdceq 10317 . . . . 5  |-  ( ( S  e.  QQ  /\  0  e.  QQ )  -> DECID  S  =  0 )
7641, 74, 75sylancl 413 . . . 4  |-  ( ph  -> DECID  S  =  0 )
77 exmiddc 837 . . . 4  |-  (DECID  S  =  0  ->  ( S  =  0  \/  -.  S  =  0 ) )
7876, 77syl 14 . . 3  |-  ( ph  ->  ( S  =  0  \/  -.  S  =  0 ) )
79 df-ne 2365 . . . 4  |-  ( S  =/=  0  <->  -.  S  =  0 )
8079orbi2i 763 . . 3  |-  ( ( S  =  0  \/  S  =/=  0 )  <-> 
( S  =  0  \/  -.  S  =  0 ) )
8178, 80sylibr 134 . 2  |-  ( ph  ->  ( S  =  0  \/  S  =/=  0
) )
8232, 71, 81mpjaodan 799 1  |-  ( ph  ->  A #  S )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2164    =/= wne 2364   class class class wbr 4030   ` cfv 5255  (class class class)co 5919   CCcc 7872   RRcr 7873   0cc0 7874   1c1 7875    + caddc 7877    x. cmul 7879    - cmin 8192   -ucneg 8193   # cap 8602   2c2 9035   ZZcz 9320   QQcq 9687   abscabs 11144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146
This theorem is referenced by:  apdiff  15608
  Copyright terms: Public domain W3C validator