Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  apdifflemr Unicode version

Theorem apdifflemr 15782
Description: Lemma for apdiff 15783. (Contributed by Jim Kingdon, 19-May-2024.)
Hypotheses
Ref Expression
apdifflemr.a  |-  ( ph  ->  A  e.  RR )
apdifflemr.s  |-  ( ph  ->  S  e.  QQ )
apdifflemr.1  |-  ( ph  ->  ( abs `  ( A  -  -u 1 ) ) #  ( abs `  ( A  -  1 ) ) )
apdifflemr.as  |-  ( (
ph  /\  S  =/=  0 )  ->  ( abs `  ( A  - 
0 ) ) #  ( abs `  ( A  -  ( 2  x.  S ) ) ) )
Assertion
Ref Expression
apdifflemr  |-  ( ph  ->  A #  S )

Proof of Theorem apdifflemr
StepHypRef Expression
1 2cnd 9082 . . . . 5  |-  ( ph  ->  2  e.  CC )
2 apdifflemr.a . . . . . 6  |-  ( ph  ->  A  e.  RR )
32recnd 8074 . . . . 5  |-  ( ph  ->  A  e.  CC )
432timesd 9253 . . . . . 6  |-  ( ph  ->  ( 2  x.  A
)  =  ( A  +  A ) )
5 apdifflemr.1 . . . . . . . . . . . 12  |-  ( ph  ->  ( abs `  ( A  -  -u 1 ) ) #  ( abs `  ( A  -  1 ) ) )
6 1cnd 8061 . . . . . . . . . . . . . 14  |-  ( ph  ->  1  e.  CC )
73, 6subnegd 8363 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A  -  -u 1
)  =  ( A  +  1 ) )
83, 6, 7comraddd 8202 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  -  -u 1
)  =  ( 1  +  A ) )
98fveq2d 5565 . . . . . . . . . . . 12  |-  ( ph  ->  ( abs `  ( A  -  -u 1 ) )  =  ( abs `  ( 1  +  A
) ) )
103, 6abssubd 11377 . . . . . . . . . . . 12  |-  ( ph  ->  ( abs `  ( A  -  1 ) )  =  ( abs `  ( 1  -  A
) ) )
115, 9, 103brtr3d 4065 . . . . . . . . . . 11  |-  ( ph  ->  ( abs `  (
1  +  A ) ) #  ( abs `  (
1  -  A ) ) )
126, 3addcld 8065 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1  +  A
)  e.  CC )
136, 3subcld 8356 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1  -  A
)  e.  CC )
14 absext 11247 . . . . . . . . . . . 12  |-  ( ( ( 1  +  A
)  e.  CC  /\  ( 1  -  A
)  e.  CC )  ->  ( ( abs `  ( 1  +  A
) ) #  ( abs `  ( 1  -  A
) )  ->  (
1  +  A ) #  ( 1  -  A
) ) )
1512, 13, 14syl2anc 411 . . . . . . . . . . 11  |-  ( ph  ->  ( ( abs `  (
1  +  A ) ) #  ( abs `  (
1  -  A ) )  ->  ( 1  +  A ) #  ( 1  -  A ) ) )
1611, 15mpd 13 . . . . . . . . . 10  |-  ( ph  ->  ( 1  +  A
) #  ( 1  -  A ) )
176, 3negsubd 8362 . . . . . . . . . 10  |-  ( ph  ->  ( 1  +  -u A )  =  ( 1  -  A ) )
1816, 17breqtrrd 4062 . . . . . . . . 9  |-  ( ph  ->  ( 1  +  A
) #  ( 1  + 
-u A ) )
193negcld 8343 . . . . . . . . . 10  |-  ( ph  -> 
-u A  e.  CC )
20 apadd2 8655 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  -u A  e.  CC  /\  1  e.  CC )  ->  ( A #  -u A  <->  ( 1  +  A ) #  ( 1  +  -u A ) ) )
213, 19, 6, 20syl3anc 1249 . . . . . . . . 9  |-  ( ph  ->  ( A #  -u A  <->  ( 1  +  A ) #  ( 1  +  -u A ) ) )
2218, 21mpbird 167 . . . . . . . 8  |-  ( ph  ->  A #  -u A )
23 apadd2 8655 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  -u A  e.  CC  /\  A  e.  CC )  ->  ( A #  -u A  <->  ( A  +  A ) #  ( A  +  -u A ) ) )
243, 19, 3, 23syl3anc 1249 . . . . . . . 8  |-  ( ph  ->  ( A #  -u A  <->  ( A  +  A ) #  ( A  +  -u A ) ) )
2522, 24mpbid 147 . . . . . . 7  |-  ( ph  ->  ( A  +  A
) #  ( A  +  -u A ) )
263negidd 8346 . . . . . . 7  |-  ( ph  ->  ( A  +  -u A )  =  0 )
2725, 26breqtrd 4060 . . . . . 6  |-  ( ph  ->  ( A  +  A
) #  0 )
284, 27eqbrtrd 4056 . . . . 5  |-  ( ph  ->  ( 2  x.  A
) #  0 )
291, 3, 28mulap0bbd 8706 . . . 4  |-  ( ph  ->  A #  0 )
3029adantr 276 . . 3  |-  ( (
ph  /\  S  = 
0 )  ->  A #  0 )
31 simpr 110 . . 3  |-  ( (
ph  /\  S  = 
0 )  ->  S  =  0 )
3230, 31breqtrrd 4062 . 2  |-  ( (
ph  /\  S  = 
0 )  ->  A #  S )
334adantr 276 . . . 4  |-  ( (
ph  /\  S  =/=  0 )  ->  (
2  x.  A )  =  ( A  +  A ) )
34 apdifflemr.as . . . . . . . 8  |-  ( (
ph  /\  S  =/=  0 )  ->  ( abs `  ( A  - 
0 ) ) #  ( abs `  ( A  -  ( 2  x.  S ) ) ) )
353subid1d 8345 . . . . . . . . . . 11  |-  ( ph  ->  ( A  -  0 )  =  A )
3635fveq2d 5565 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  ( A  -  0 ) )  =  ( abs `  A ) )
37 2z 9373 . . . . . . . . . . . . . . 15  |-  2  e.  ZZ
38 zq 9719 . . . . . . . . . . . . . . 15  |-  ( 2  e.  ZZ  ->  2  e.  QQ )
3937, 38ax-mp 5 . . . . . . . . . . . . . 14  |-  2  e.  QQ
4039a1i 9 . . . . . . . . . . . . 13  |-  ( ph  ->  2  e.  QQ )
41 apdifflemr.s . . . . . . . . . . . . 13  |-  ( ph  ->  S  e.  QQ )
42 qmulcl 9730 . . . . . . . . . . . . 13  |-  ( ( 2  e.  QQ  /\  S  e.  QQ )  ->  ( 2  x.  S
)  e.  QQ )
4340, 41, 42syl2anc 411 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2  x.  S
)  e.  QQ )
44 qcn 9727 . . . . . . . . . . . 12  |-  ( ( 2  x.  S )  e.  QQ  ->  (
2  x.  S )  e.  CC )
4543, 44syl 14 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  S
)  e.  CC )
463, 45abssubd 11377 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  ( A  -  ( 2  x.  S ) ) )  =  ( abs `  ( ( 2  x.  S )  -  A
) ) )
4736, 46breq12d 4047 . . . . . . . . 9  |-  ( ph  ->  ( ( abs `  ( A  -  0 ) ) #  ( abs `  ( A  -  ( 2  x.  S ) ) )  <->  ( abs `  A
) #  ( abs `  (
( 2  x.  S
)  -  A ) ) ) )
4847adantr 276 . . . . . . . 8  |-  ( (
ph  /\  S  =/=  0 )  ->  (
( abs `  ( A  -  0 ) ) #  ( abs `  ( A  -  ( 2  x.  S ) ) )  <->  ( abs `  A
) #  ( abs `  (
( 2  x.  S
)  -  A ) ) ) )
4934, 48mpbid 147 . . . . . . 7  |-  ( (
ph  /\  S  =/=  0 )  ->  ( abs `  A ) #  ( abs `  ( ( 2  x.  S )  -  A ) ) )
503adantr 276 . . . . . . . 8  |-  ( (
ph  /\  S  =/=  0 )  ->  A  e.  CC )
5145, 3subcld 8356 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  S )  -  A
)  e.  CC )
5251adantr 276 . . . . . . . 8  |-  ( (
ph  /\  S  =/=  0 )  ->  (
( 2  x.  S
)  -  A )  e.  CC )
53 absext 11247 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( ( 2  x.  S )  -  A
)  e.  CC )  ->  ( ( abs `  A ) #  ( abs `  ( ( 2  x.  S )  -  A
) )  ->  A #  ( ( 2  x.  S )  -  A
) ) )
5450, 52, 53syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  S  =/=  0 )  ->  (
( abs `  A
) #  ( abs `  (
( 2  x.  S
)  -  A ) )  ->  A #  (
( 2  x.  S
)  -  A ) ) )
5549, 54mpd 13 . . . . . 6  |-  ( (
ph  /\  S  =/=  0 )  ->  A #  ( ( 2  x.  S )  -  A
) )
56 apadd2 8655 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( ( 2  x.  S )  -  A
)  e.  CC  /\  A  e.  CC )  ->  ( A #  ( ( 2  x.  S )  -  A )  <->  ( A  +  A ) #  ( A  +  ( ( 2  x.  S )  -  A ) ) ) )
5750, 52, 50, 56syl3anc 1249 . . . . . 6  |-  ( (
ph  /\  S  =/=  0 )  ->  ( A #  ( ( 2  x.  S )  -  A
)  <->  ( A  +  A ) #  ( A  +  ( ( 2  x.  S )  -  A ) ) ) )
5855, 57mpbid 147 . . . . 5  |-  ( (
ph  /\  S  =/=  0 )  ->  ( A  +  A ) #  ( A  +  (
( 2  x.  S
)  -  A ) ) )
5945adantr 276 . . . . . 6  |-  ( (
ph  /\  S  =/=  0 )  ->  (
2  x.  S )  e.  CC )
6050, 59pncan3d 8359 . . . . 5  |-  ( (
ph  /\  S  =/=  0 )  ->  ( A  +  ( (
2  x.  S )  -  A ) )  =  ( 2  x.  S ) )
6158, 60breqtrd 4060 . . . 4  |-  ( (
ph  /\  S  =/=  0 )  ->  ( A  +  A ) #  ( 2  x.  S
) )
6233, 61eqbrtrd 4056 . . 3  |-  ( (
ph  /\  S  =/=  0 )  ->  (
2  x.  A ) #  ( 2  x.  S
) )
63 qcn 9727 . . . . . 6  |-  ( S  e.  QQ  ->  S  e.  CC )
6441, 63syl 14 . . . . 5  |-  ( ph  ->  S  e.  CC )
6564adantr 276 . . . 4  |-  ( (
ph  /\  S  =/=  0 )  ->  S  e.  CC )
66 2cnd 9082 . . . 4  |-  ( (
ph  /\  S  =/=  0 )  ->  2  e.  CC )
67 2ap0 9102 . . . . 5  |-  2 #  0
6867a1i 9 . . . 4  |-  ( (
ph  /\  S  =/=  0 )  ->  2 #  0 )
69 apmul2 8835 . . . 4  |-  ( ( A  e.  CC  /\  S  e.  CC  /\  (
2  e.  CC  /\  2 #  0 ) )  -> 
( A #  S  <->  ( 2  x.  A ) #  ( 2  x.  S ) ) )
7050, 65, 66, 68, 69syl112anc 1253 . . 3  |-  ( (
ph  /\  S  =/=  0 )  ->  ( A #  S  <->  ( 2  x.  A ) #  ( 2  x.  S ) ) )
7162, 70mpbird 167 . 2  |-  ( (
ph  /\  S  =/=  0 )  ->  A #  S )
72 0z 9356 . . . . . 6  |-  0  e.  ZZ
73 zq 9719 . . . . . 6  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
7472, 73ax-mp 5 . . . . 5  |-  0  e.  QQ
75 qdceq 10353 . . . . 5  |-  ( ( S  e.  QQ  /\  0  e.  QQ )  -> DECID  S  =  0 )
7641, 74, 75sylancl 413 . . . 4  |-  ( ph  -> DECID  S  =  0 )
77 exmiddc 837 . . . 4  |-  (DECID  S  =  0  ->  ( S  =  0  \/  -.  S  =  0 ) )
7876, 77syl 14 . . 3  |-  ( ph  ->  ( S  =  0  \/  -.  S  =  0 ) )
79 df-ne 2368 . . . 4  |-  ( S  =/=  0  <->  -.  S  =  0 )
8079orbi2i 763 . . 3  |-  ( ( S  =  0  \/  S  =/=  0 )  <-> 
( S  =  0  \/  -.  S  =  0 ) )
8178, 80sylibr 134 . 2  |-  ( ph  ->  ( S  =  0  \/  S  =/=  0
) )
8232, 71, 81mpjaodan 799 1  |-  ( ph  ->  A #  S )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2167    =/= wne 2367   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   CCcc 7896   RRcr 7897   0cc0 7898   1c1 7899    + caddc 7901    x. cmul 7903    - cmin 8216   -ucneg 8217   # cap 8627   2c2 9060   ZZcz 9345   QQcq 9712   abscabs 11181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183
This theorem is referenced by:  apdiff  15783
  Copyright terms: Public domain W3C validator