Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  apdifflemr Unicode version

Theorem apdifflemr 15691
Description: Lemma for apdiff 15692. (Contributed by Jim Kingdon, 19-May-2024.)
Hypotheses
Ref Expression
apdifflemr.a  |-  ( ph  ->  A  e.  RR )
apdifflemr.s  |-  ( ph  ->  S  e.  QQ )
apdifflemr.1  |-  ( ph  ->  ( abs `  ( A  -  -u 1 ) ) #  ( abs `  ( A  -  1 ) ) )
apdifflemr.as  |-  ( (
ph  /\  S  =/=  0 )  ->  ( abs `  ( A  - 
0 ) ) #  ( abs `  ( A  -  ( 2  x.  S ) ) ) )
Assertion
Ref Expression
apdifflemr  |-  ( ph  ->  A #  S )

Proof of Theorem apdifflemr
StepHypRef Expression
1 2cnd 9063 . . . . 5  |-  ( ph  ->  2  e.  CC )
2 apdifflemr.a . . . . . 6  |-  ( ph  ->  A  e.  RR )
32recnd 8055 . . . . 5  |-  ( ph  ->  A  e.  CC )
432timesd 9234 . . . . . 6  |-  ( ph  ->  ( 2  x.  A
)  =  ( A  +  A ) )
5 apdifflemr.1 . . . . . . . . . . . 12  |-  ( ph  ->  ( abs `  ( A  -  -u 1 ) ) #  ( abs `  ( A  -  1 ) ) )
6 1cnd 8042 . . . . . . . . . . . . . 14  |-  ( ph  ->  1  e.  CC )
73, 6subnegd 8344 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A  -  -u 1
)  =  ( A  +  1 ) )
83, 6, 7comraddd 8183 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  -  -u 1
)  =  ( 1  +  A ) )
98fveq2d 5562 . . . . . . . . . . . 12  |-  ( ph  ->  ( abs `  ( A  -  -u 1 ) )  =  ( abs `  ( 1  +  A
) ) )
103, 6abssubd 11358 . . . . . . . . . . . 12  |-  ( ph  ->  ( abs `  ( A  -  1 ) )  =  ( abs `  ( 1  -  A
) ) )
115, 9, 103brtr3d 4064 . . . . . . . . . . 11  |-  ( ph  ->  ( abs `  (
1  +  A ) ) #  ( abs `  (
1  -  A ) ) )
126, 3addcld 8046 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1  +  A
)  e.  CC )
136, 3subcld 8337 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1  -  A
)  e.  CC )
14 absext 11228 . . . . . . . . . . . 12  |-  ( ( ( 1  +  A
)  e.  CC  /\  ( 1  -  A
)  e.  CC )  ->  ( ( abs `  ( 1  +  A
) ) #  ( abs `  ( 1  -  A
) )  ->  (
1  +  A ) #  ( 1  -  A
) ) )
1512, 13, 14syl2anc 411 . . . . . . . . . . 11  |-  ( ph  ->  ( ( abs `  (
1  +  A ) ) #  ( abs `  (
1  -  A ) )  ->  ( 1  +  A ) #  ( 1  -  A ) ) )
1611, 15mpd 13 . . . . . . . . . 10  |-  ( ph  ->  ( 1  +  A
) #  ( 1  -  A ) )
176, 3negsubd 8343 . . . . . . . . . 10  |-  ( ph  ->  ( 1  +  -u A )  =  ( 1  -  A ) )
1816, 17breqtrrd 4061 . . . . . . . . 9  |-  ( ph  ->  ( 1  +  A
) #  ( 1  + 
-u A ) )
193negcld 8324 . . . . . . . . . 10  |-  ( ph  -> 
-u A  e.  CC )
20 apadd2 8636 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  -u A  e.  CC  /\  1  e.  CC )  ->  ( A #  -u A  <->  ( 1  +  A ) #  ( 1  +  -u A ) ) )
213, 19, 6, 20syl3anc 1249 . . . . . . . . 9  |-  ( ph  ->  ( A #  -u A  <->  ( 1  +  A ) #  ( 1  +  -u A ) ) )
2218, 21mpbird 167 . . . . . . . 8  |-  ( ph  ->  A #  -u A )
23 apadd2 8636 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  -u A  e.  CC  /\  A  e.  CC )  ->  ( A #  -u A  <->  ( A  +  A ) #  ( A  +  -u A ) ) )
243, 19, 3, 23syl3anc 1249 . . . . . . . 8  |-  ( ph  ->  ( A #  -u A  <->  ( A  +  A ) #  ( A  +  -u A ) ) )
2522, 24mpbid 147 . . . . . . 7  |-  ( ph  ->  ( A  +  A
) #  ( A  +  -u A ) )
263negidd 8327 . . . . . . 7  |-  ( ph  ->  ( A  +  -u A )  =  0 )
2725, 26breqtrd 4059 . . . . . 6  |-  ( ph  ->  ( A  +  A
) #  0 )
284, 27eqbrtrd 4055 . . . . 5  |-  ( ph  ->  ( 2  x.  A
) #  0 )
291, 3, 28mulap0bbd 8687 . . . 4  |-  ( ph  ->  A #  0 )
3029adantr 276 . . 3  |-  ( (
ph  /\  S  = 
0 )  ->  A #  0 )
31 simpr 110 . . 3  |-  ( (
ph  /\  S  = 
0 )  ->  S  =  0 )
3230, 31breqtrrd 4061 . 2  |-  ( (
ph  /\  S  = 
0 )  ->  A #  S )
334adantr 276 . . . 4  |-  ( (
ph  /\  S  =/=  0 )  ->  (
2  x.  A )  =  ( A  +  A ) )
34 apdifflemr.as . . . . . . . 8  |-  ( (
ph  /\  S  =/=  0 )  ->  ( abs `  ( A  - 
0 ) ) #  ( abs `  ( A  -  ( 2  x.  S ) ) ) )
353subid1d 8326 . . . . . . . . . . 11  |-  ( ph  ->  ( A  -  0 )  =  A )
3635fveq2d 5562 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  ( A  -  0 ) )  =  ( abs `  A ) )
37 2z 9354 . . . . . . . . . . . . . . 15  |-  2  e.  ZZ
38 zq 9700 . . . . . . . . . . . . . . 15  |-  ( 2  e.  ZZ  ->  2  e.  QQ )
3937, 38ax-mp 5 . . . . . . . . . . . . . 14  |-  2  e.  QQ
4039a1i 9 . . . . . . . . . . . . 13  |-  ( ph  ->  2  e.  QQ )
41 apdifflemr.s . . . . . . . . . . . . 13  |-  ( ph  ->  S  e.  QQ )
42 qmulcl 9711 . . . . . . . . . . . . 13  |-  ( ( 2  e.  QQ  /\  S  e.  QQ )  ->  ( 2  x.  S
)  e.  QQ )
4340, 41, 42syl2anc 411 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2  x.  S
)  e.  QQ )
44 qcn 9708 . . . . . . . . . . . 12  |-  ( ( 2  x.  S )  e.  QQ  ->  (
2  x.  S )  e.  CC )
4543, 44syl 14 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  S
)  e.  CC )
463, 45abssubd 11358 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  ( A  -  ( 2  x.  S ) ) )  =  ( abs `  ( ( 2  x.  S )  -  A
) ) )
4736, 46breq12d 4046 . . . . . . . . 9  |-  ( ph  ->  ( ( abs `  ( A  -  0 ) ) #  ( abs `  ( A  -  ( 2  x.  S ) ) )  <->  ( abs `  A
) #  ( abs `  (
( 2  x.  S
)  -  A ) ) ) )
4847adantr 276 . . . . . . . 8  |-  ( (
ph  /\  S  =/=  0 )  ->  (
( abs `  ( A  -  0 ) ) #  ( abs `  ( A  -  ( 2  x.  S ) ) )  <->  ( abs `  A
) #  ( abs `  (
( 2  x.  S
)  -  A ) ) ) )
4934, 48mpbid 147 . . . . . . 7  |-  ( (
ph  /\  S  =/=  0 )  ->  ( abs `  A ) #  ( abs `  ( ( 2  x.  S )  -  A ) ) )
503adantr 276 . . . . . . . 8  |-  ( (
ph  /\  S  =/=  0 )  ->  A  e.  CC )
5145, 3subcld 8337 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  S )  -  A
)  e.  CC )
5251adantr 276 . . . . . . . 8  |-  ( (
ph  /\  S  =/=  0 )  ->  (
( 2  x.  S
)  -  A )  e.  CC )
53 absext 11228 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( ( 2  x.  S )  -  A
)  e.  CC )  ->  ( ( abs `  A ) #  ( abs `  ( ( 2  x.  S )  -  A
) )  ->  A #  ( ( 2  x.  S )  -  A
) ) )
5450, 52, 53syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  S  =/=  0 )  ->  (
( abs `  A
) #  ( abs `  (
( 2  x.  S
)  -  A ) )  ->  A #  (
( 2  x.  S
)  -  A ) ) )
5549, 54mpd 13 . . . . . 6  |-  ( (
ph  /\  S  =/=  0 )  ->  A #  ( ( 2  x.  S )  -  A
) )
56 apadd2 8636 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( ( 2  x.  S )  -  A
)  e.  CC  /\  A  e.  CC )  ->  ( A #  ( ( 2  x.  S )  -  A )  <->  ( A  +  A ) #  ( A  +  ( ( 2  x.  S )  -  A ) ) ) )
5750, 52, 50, 56syl3anc 1249 . . . . . 6  |-  ( (
ph  /\  S  =/=  0 )  ->  ( A #  ( ( 2  x.  S )  -  A
)  <->  ( A  +  A ) #  ( A  +  ( ( 2  x.  S )  -  A ) ) ) )
5855, 57mpbid 147 . . . . 5  |-  ( (
ph  /\  S  =/=  0 )  ->  ( A  +  A ) #  ( A  +  (
( 2  x.  S
)  -  A ) ) )
5945adantr 276 . . . . . 6  |-  ( (
ph  /\  S  =/=  0 )  ->  (
2  x.  S )  e.  CC )
6050, 59pncan3d 8340 . . . . 5  |-  ( (
ph  /\  S  =/=  0 )  ->  ( A  +  ( (
2  x.  S )  -  A ) )  =  ( 2  x.  S ) )
6158, 60breqtrd 4059 . . . 4  |-  ( (
ph  /\  S  =/=  0 )  ->  ( A  +  A ) #  ( 2  x.  S
) )
6233, 61eqbrtrd 4055 . . 3  |-  ( (
ph  /\  S  =/=  0 )  ->  (
2  x.  A ) #  ( 2  x.  S
) )
63 qcn 9708 . . . . . 6  |-  ( S  e.  QQ  ->  S  e.  CC )
6441, 63syl 14 . . . . 5  |-  ( ph  ->  S  e.  CC )
6564adantr 276 . . . 4  |-  ( (
ph  /\  S  =/=  0 )  ->  S  e.  CC )
66 2cnd 9063 . . . 4  |-  ( (
ph  /\  S  =/=  0 )  ->  2  e.  CC )
67 2ap0 9083 . . . . 5  |-  2 #  0
6867a1i 9 . . . 4  |-  ( (
ph  /\  S  =/=  0 )  ->  2 #  0 )
69 apmul2 8816 . . . 4  |-  ( ( A  e.  CC  /\  S  e.  CC  /\  (
2  e.  CC  /\  2 #  0 ) )  -> 
( A #  S  <->  ( 2  x.  A ) #  ( 2  x.  S ) ) )
7050, 65, 66, 68, 69syl112anc 1253 . . 3  |-  ( (
ph  /\  S  =/=  0 )  ->  ( A #  S  <->  ( 2  x.  A ) #  ( 2  x.  S ) ) )
7162, 70mpbird 167 . 2  |-  ( (
ph  /\  S  =/=  0 )  ->  A #  S )
72 0z 9337 . . . . . 6  |-  0  e.  ZZ
73 zq 9700 . . . . . 6  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
7472, 73ax-mp 5 . . . . 5  |-  0  e.  QQ
75 qdceq 10334 . . . . 5  |-  ( ( S  e.  QQ  /\  0  e.  QQ )  -> DECID  S  =  0 )
7641, 74, 75sylancl 413 . . . 4  |-  ( ph  -> DECID  S  =  0 )
77 exmiddc 837 . . . 4  |-  (DECID  S  =  0  ->  ( S  =  0  \/  -.  S  =  0 ) )
7876, 77syl 14 . . 3  |-  ( ph  ->  ( S  =  0  \/  -.  S  =  0 ) )
79 df-ne 2368 . . . 4  |-  ( S  =/=  0  <->  -.  S  =  0 )
8079orbi2i 763 . . 3  |-  ( ( S  =  0  \/  S  =/=  0 )  <-> 
( S  =  0  \/  -.  S  =  0 ) )
8178, 80sylibr 134 . 2  |-  ( ph  ->  ( S  =  0  \/  S  =/=  0
) )
8232, 71, 81mpjaodan 799 1  |-  ( ph  ->  A #  S )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2167    =/= wne 2367   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   CCcc 7877   RRcr 7878   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884    - cmin 8197   -ucneg 8198   # cap 8608   2c2 9041   ZZcz 9326   QQcq 9693   abscabs 11162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164
This theorem is referenced by:  apdiff  15692
  Copyright terms: Public domain W3C validator