![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addcomd | Unicode version |
Description: Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
muld.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
addcomd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
addcomd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | addcomd.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | addcom 8158 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2anc 411 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-addcom 7974 |
This theorem is referenced by: muladd11r 8177 comraddd 8178 subadd2 8225 pncan 8227 npcan 8230 subcan 8276 mvlladdd 8386 subaddeqd 8390 addrsub 8392 ltadd1 8450 leadd2 8452 ltsubadd2 8454 lesubadd2 8456 mulreim 8625 apadd2 8630 recp1lt1 8920 ltaddrp2d 9800 lincmb01cmp 10072 iccf1o 10073 rebtwn2zlemstep 10324 qavgle 10330 modqaddabs 10436 mulqaddmodid 10438 qnegmod 10443 modqadd2mod 10448 modqadd12d 10454 modqaddmulmod 10465 addmodlteq 10472 expaddzap 10657 bcn2m1 10843 bcn2p1 10844 remullem 11018 resqrexlemover 11157 maxabslemab 11353 maxabslemval 11355 bdtrilem 11385 climaddc2 11476 telfsumo 11612 fsumparts 11616 bcxmas 11635 isumshft 11636 cvgratnnlemsumlt 11674 cosneg 11873 sinadd 11882 sincossq 11894 cos2t 11896 absefi 11915 absefib 11917 gcdaddm 12124 pythagtrip 12424 pcadd2 12482 mulgnndir 13224 mulgdirlem 13226 metrtri 14556 plymullem1 14927 lgseisenlem1 15227 2sqlem3 15274 apdifflemf 15606 apdiff 15608 |
Copyright terms: Public domain | W3C validator |