![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addcomd | Unicode version |
Description: Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
muld.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
addcomd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
addcomd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | addcomd.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | addcom 8096 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2anc 411 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-addcom 7913 |
This theorem is referenced by: muladd11r 8115 comraddd 8116 subadd2 8163 pncan 8165 npcan 8168 subcan 8214 mvlladdd 8324 subaddeqd 8328 addrsub 8330 ltadd1 8388 leadd2 8390 ltsubadd2 8392 lesubadd2 8394 mulreim 8563 apadd2 8568 recp1lt1 8858 ltaddrp2d 9733 lincmb01cmp 10005 iccf1o 10006 rebtwn2zlemstep 10255 qavgle 10261 modqaddabs 10364 mulqaddmodid 10366 qnegmod 10371 modqadd2mod 10376 modqadd12d 10382 modqaddmulmod 10393 addmodlteq 10400 expaddzap 10566 bcn2m1 10751 bcn2p1 10752 remullem 10882 resqrexlemover 11021 maxabslemab 11217 maxabslemval 11219 bdtrilem 11249 climaddc2 11340 telfsumo 11476 fsumparts 11480 bcxmas 11499 isumshft 11500 cvgratnnlemsumlt 11538 cosneg 11737 sinadd 11746 sincossq 11758 cos2t 11760 absefi 11778 absefib 11780 gcdaddm 11987 pythagtrip 12285 mulgnndir 13017 mulgdirlem 13019 metrtri 13916 lgseisenlem1 14489 2sqlem3 14503 apdifflemf 14833 apdiff 14835 |
Copyright terms: Public domain | W3C validator |