| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcomd | Unicode version | ||
| Description: Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| muld.1 |
|
| addcomd.2 |
|
| Ref | Expression |
|---|---|
| addcomd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 |
. 2
| |
| 2 | addcomd.2 |
. 2
| |
| 3 | addcom 8271 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-addcom 8087 |
| This theorem is referenced by: muladd11r 8290 comraddd 8291 subadd2 8338 pncan 8340 npcan 8343 subcan 8389 mvlladdd 8499 subaddeqd 8503 addrsub 8505 ltadd1 8564 leadd2 8566 ltsubadd2 8568 lesubadd2 8570 mulreim 8739 apadd2 8744 recp1lt1 9034 ltaddrp2d 9915 lincmb01cmp 10187 iccf1o 10188 elfzoext 10385 rebtwn2zlemstep 10459 qavgle 10465 modqaddabs 10571 mulqaddmodid 10573 qnegmod 10578 modqadd2mod 10583 modqadd12d 10589 modqaddmulmod 10600 addmodlteq 10607 expaddzap 10792 bcn2m1 10978 bcn2p1 10979 lenrevpfxcctswrd 11230 remullem 11368 resqrexlemover 11507 maxabslemab 11703 maxabslemval 11705 bdtrilem 11736 climaddc2 11827 telfsumo 11963 fsumparts 11967 bcxmas 11986 isumshft 11987 cvgratnnlemsumlt 12025 cosneg 12224 sinadd 12233 sincossq 12245 cos2t 12247 absefi 12266 absefib 12268 gcdaddm 12491 pythagtrip 12792 pcadd2 12850 mulgnndir 13674 mulgdirlem 13676 metrtri 15036 plymullem1 15407 lgseisenlem1 15734 2sqlem3 15781 apdifflemf 16345 apdiff 16347 |
| Copyright terms: Public domain | W3C validator |