ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumparts Unicode version

Theorem fsumparts 11814
Description: Summation by parts. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
fsumparts.b  |-  ( k  =  j  ->  ( A  =  B  /\  V  =  W )
)
fsumparts.c  |-  ( k  =  ( j  +  1 )  ->  ( A  =  C  /\  V  =  X )
)
fsumparts.d  |-  ( k  =  M  ->  ( A  =  D  /\  V  =  Y )
)
fsumparts.e  |-  ( k  =  N  ->  ( A  =  E  /\  V  =  Z )
)
fsumparts.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
fsumparts.2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
fsumparts.3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  V  e.  CC )
Assertion
Ref Expression
fsumparts  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( B  x.  ( X  -  W ) )  =  ( ( ( E  x.  Z )  -  ( D  x.  Y ) )  -  sum_ j  e.  ( M..^ N ) ( ( C  -  B )  x.  X ) ) )
Distinct variable groups:    A, j    B, k    C, k    D, k   
k, E    j, V    k, W    j, k, M   
j, N, k    ph, j,
k    k, X    k, Y    k, Z
Allowed substitution hints:    A( k)    B( j)    C( j)    D( j)    E( j)    V( k)    W( j)    X( j)    Y( j)    Z( j)

Proof of Theorem fsumparts
StepHypRef Expression
1 sum0 11732 . . . 4  |-  sum_ j  e.  (/)  ( B  x.  ( X  -  W
) )  =  0
2 0m0e0 9150 . . . 4  |-  ( 0  -  0 )  =  0
31, 2eqtr4i 2229 . . 3  |-  sum_ j  e.  (/)  ( B  x.  ( X  -  W
) )  =  ( 0  -  0 )
4 simpr 110 . . . . . 6  |-  ( (
ph  /\  N  =  M )  ->  N  =  M )
54oveq2d 5962 . . . . 5  |-  ( (
ph  /\  N  =  M )  ->  ( M..^ N )  =  ( M..^ M ) )
6 fzo0 10294 . . . . 5  |-  ( M..^ M )  =  (/)
75, 6eqtrdi 2254 . . . 4  |-  ( (
ph  /\  N  =  M )  ->  ( M..^ N )  =  (/) )
87sumeq1d 11710 . . 3  |-  ( (
ph  /\  N  =  M )  ->  sum_ j  e.  ( M..^ N ) ( B  x.  ( X  -  W )
)  =  sum_ j  e.  (/)  ( B  x.  ( X  -  W
) ) )
9 fsumparts.1 . . . . . . . 8  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
10 eluzfz1 10155 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
119, 10syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ( M ... N ) )
12 eqtr3 2225 . . . . . . . . . . . 12  |-  ( ( k  =  M  /\  N  =  M )  ->  k  =  N )
13 fsumparts.e . . . . . . . . . . . 12  |-  ( k  =  N  ->  ( A  =  E  /\  V  =  Z )
)
14 oveq12 5955 . . . . . . . . . . . 12  |-  ( ( A  =  E  /\  V  =  Z )  ->  ( A  x.  V
)  =  ( E  x.  Z ) )
1512, 13, 143syl 17 . . . . . . . . . . 11  |-  ( ( k  =  M  /\  N  =  M )  ->  ( A  x.  V
)  =  ( E  x.  Z ) )
16 fsumparts.d . . . . . . . . . . . . 13  |-  ( k  =  M  ->  ( A  =  D  /\  V  =  Y )
)
17 oveq12 5955 . . . . . . . . . . . . 13  |-  ( ( A  =  D  /\  V  =  Y )  ->  ( A  x.  V
)  =  ( D  x.  Y ) )
1816, 17syl 14 . . . . . . . . . . . 12  |-  ( k  =  M  ->  ( A  x.  V )  =  ( D  x.  Y ) )
1918adantr 276 . . . . . . . . . . 11  |-  ( ( k  =  M  /\  N  =  M )  ->  ( A  x.  V
)  =  ( D  x.  Y ) )
2015, 19eqeq12d 2220 . . . . . . . . . 10  |-  ( ( k  =  M  /\  N  =  M )  ->  ( ( A  x.  V )  =  ( A  x.  V )  <-> 
( E  x.  Z
)  =  ( D  x.  Y ) ) )
2120pm5.74da 443 . . . . . . . . 9  |-  ( k  =  M  ->  (
( N  =  M  ->  ( A  x.  V )  =  ( A  x.  V ) )  <->  ( N  =  M  ->  ( E  x.  Z )  =  ( D  x.  Y ) ) ) )
22 eqidd 2206 . . . . . . . . 9  |-  ( N  =  M  ->  ( A  x.  V )  =  ( A  x.  V ) )
2321, 22vtoclg 2833 . . . . . . . 8  |-  ( M  e.  ( M ... N )  ->  ( N  =  M  ->  ( E  x.  Z )  =  ( D  x.  Y ) ) )
2423imp 124 . . . . . . 7  |-  ( ( M  e.  ( M ... N )  /\  N  =  M )  ->  ( E  x.  Z
)  =  ( D  x.  Y ) )
2511, 24sylan 283 . . . . . 6  |-  ( (
ph  /\  N  =  M )  ->  ( E  x.  Z )  =  ( D  x.  Y ) )
2625oveq1d 5961 . . . . 5  |-  ( (
ph  /\  N  =  M )  ->  (
( E  x.  Z
)  -  ( D  x.  Y ) )  =  ( ( D  x.  Y )  -  ( D  x.  Y
) ) )
2716simpld 112 . . . . . . . . . 10  |-  ( k  =  M  ->  A  =  D )
2827eleq1d 2274 . . . . . . . . 9  |-  ( k  =  M  ->  ( A  e.  CC  <->  D  e.  CC ) )
29 fsumparts.2 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
3029ralrimiva 2579 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  ( M ... N ) A  e.  CC )
3128, 30, 11rspcdva 2882 . . . . . . . 8  |-  ( ph  ->  D  e.  CC )
3216simprd 114 . . . . . . . . . 10  |-  ( k  =  M  ->  V  =  Y )
3332eleq1d 2274 . . . . . . . . 9  |-  ( k  =  M  ->  ( V  e.  CC  <->  Y  e.  CC ) )
34 fsumparts.3 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  V  e.  CC )
3534ralrimiva 2579 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  ( M ... N ) V  e.  CC )
3633, 35, 11rspcdva 2882 . . . . . . . 8  |-  ( ph  ->  Y  e.  CC )
3731, 36mulcld 8095 . . . . . . 7  |-  ( ph  ->  ( D  x.  Y
)  e.  CC )
3837subidd 8373 . . . . . 6  |-  ( ph  ->  ( ( D  x.  Y )  -  ( D  x.  Y )
)  =  0 )
3938adantr 276 . . . . 5  |-  ( (
ph  /\  N  =  M )  ->  (
( D  x.  Y
)  -  ( D  x.  Y ) )  =  0 )
4026, 39eqtrd 2238 . . . 4  |-  ( (
ph  /\  N  =  M )  ->  (
( E  x.  Z
)  -  ( D  x.  Y ) )  =  0 )
417sumeq1d 11710 . . . . 5  |-  ( (
ph  /\  N  =  M )  ->  sum_ j  e.  ( M..^ N ) ( ( C  -  B )  x.  X
)  =  sum_ j  e.  (/)  ( ( C  -  B )  x.  X ) )
42 sum0 11732 . . . . 5  |-  sum_ j  e.  (/)  ( ( C  -  B )  x.  X )  =  0
4341, 42eqtrdi 2254 . . . 4  |-  ( (
ph  /\  N  =  M )  ->  sum_ j  e.  ( M..^ N ) ( ( C  -  B )  x.  X
)  =  0 )
4440, 43oveq12d 5964 . . 3  |-  ( (
ph  /\  N  =  M )  ->  (
( ( E  x.  Z )  -  ( D  x.  Y )
)  -  sum_ j  e.  ( M..^ N ) ( ( C  -  B )  x.  X
) )  =  ( 0  -  0 ) )
453, 8, 443eqtr4a 2264 . 2  |-  ( (
ph  /\  N  =  M )  ->  sum_ j  e.  ( M..^ N ) ( B  x.  ( X  -  W )
)  =  ( ( ( E  x.  Z
)  -  ( D  x.  Y ) )  -  sum_ j  e.  ( M..^ N ) ( ( C  -  B
)  x.  X ) ) )
46 eluzel2 9655 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
479, 46syl 14 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  ZZ )
4847adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  M  e.  ZZ )
4948peano2zd 9500 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( M  +  1 )  e.  ZZ )
50 eluzelz 9659 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
519, 50syl 14 . . . . . . . . . 10  |-  ( ph  ->  N  e.  ZZ )
5251adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  N  e.  ZZ )
53 fzofig 10579 . . . . . . . . 9  |-  ( ( ( M  +  1 )  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  + 
1 )..^ N )  e.  Fin )
5449, 52, 53syl2anc 411 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( M  +  1 )..^ N )  e.  Fin )
55 uzid 9664 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
56 peano2uz 9706 . . . . . . . . . . 11  |-  ( M  e.  ( ZZ>= `  M
)  ->  ( M  +  1 )  e.  ( ZZ>= `  M )
)
57 fzoss1 10297 . . . . . . . . . . 11  |-  ( ( M  +  1 )  e.  ( ZZ>= `  M
)  ->  ( ( M  +  1 )..^ N )  C_  ( M..^ N ) )
5848, 55, 56, 574syl 18 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( M  +  1 )..^ N )  C_  ( M..^ N ) )
5958sselda 3193 . . . . . . . . 9  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( ( M  + 
1 )..^ N ) )  ->  k  e.  ( M..^ N ) )
60 elfzofz 10287 . . . . . . . . . . 11  |-  ( k  e.  ( M..^ N
)  ->  k  e.  ( M ... N ) )
6129, 34mulcld 8095 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( A  x.  V )  e.  CC )
6260, 61sylan2 286 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( A  x.  V )  e.  CC )
6362adantlr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( M..^ N ) )  ->  ( A  x.  V )  e.  CC )
6459, 63syldan 282 . . . . . . . 8  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( ( M  + 
1 )..^ N ) )  ->  ( A  x.  V )  e.  CC )
6554, 64fsumcl 11744 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( ( M  + 
1 )..^ N ) ( A  x.  V
)  e.  CC )
6613simpld 112 . . . . . . . . . . 11  |-  ( k  =  N  ->  A  =  E )
6766eleq1d 2274 . . . . . . . . . 10  |-  ( k  =  N  ->  ( A  e.  CC  <->  E  e.  CC ) )
68 eluzfz2 10156 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
699, 68syl 14 . . . . . . . . . 10  |-  ( ph  ->  N  e.  ( M ... N ) )
7067, 30, 69rspcdva 2882 . . . . . . . . 9  |-  ( ph  ->  E  e.  CC )
7113simprd 114 . . . . . . . . . . 11  |-  ( k  =  N  ->  V  =  Z )
7271eleq1d 2274 . . . . . . . . . 10  |-  ( k  =  N  ->  ( V  e.  CC  <->  Z  e.  CC ) )
7372, 35, 69rspcdva 2882 . . . . . . . . 9  |-  ( ph  ->  Z  e.  CC )
7470, 73mulcld 8095 . . . . . . . 8  |-  ( ph  ->  ( E  x.  Z
)  e.  CC )
7574adantr 276 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( E  x.  Z )  e.  CC )
76 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  N  e.  ( ZZ>= `  ( M  +  1 ) ) )
77 fzp1ss 10197 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  (
( M  +  1 ) ... N ) 
C_  ( M ... N ) )
7848, 77syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( M  +  1 ) ... N )  C_  ( M ... N ) )
7978sselda 3193 . . . . . . . . . 10  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  k  e.  ( M ... N
) )
8061adantlr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( M ... N
) )  ->  ( A  x.  V )  e.  CC )
8179, 80syldan 282 . . . . . . . . 9  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  ( A  x.  V )  e.  CC )
8213, 14syl 14 . . . . . . . . 9  |-  ( k  =  N  ->  ( A  x.  V )  =  ( E  x.  Z ) )
8376, 81, 82fsumm1 11760 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( ( M  + 
1 ) ... N
) ( A  x.  V )  =  (
sum_ k  e.  ( ( M  +  1 ) ... ( N  -  1 ) ) ( A  x.  V
)  +  ( E  x.  Z ) ) )
84 fzoval 10272 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  ( M..^ N )  =  ( M ... ( N  -  1 ) ) )
8552, 84syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( M..^ N )  =  ( M ... ( N  -  1 ) ) )
8648zcnd 9498 . . . . . . . . . . . . 13  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  M  e.  CC )
87 ax-1cn 8020 . . . . . . . . . . . . 13  |-  1  e.  CC
88 pncan 8280 . . . . . . . . . . . . 13  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( ( M  + 
1 )  -  1 )  =  M )
8986, 87, 88sylancl 413 . . . . . . . . . . . 12  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( M  +  1 )  -  1 )  =  M )
9089oveq1d 5961 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (
( M  +  1 )  -  1 ) ... ( N  - 
1 ) )  =  ( M ... ( N  -  1 ) ) )
9185, 90eqtr4d 2241 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( M..^ N )  =  ( ( ( M  + 
1 )  -  1 ) ... ( N  -  1 ) ) )
9291sumeq1d 11710 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( C  x.  X
)  =  sum_ j  e.  ( ( ( M  +  1 )  - 
1 ) ... ( N  -  1 ) ) ( C  x.  X ) )
93 1zzd 9401 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  1  e.  ZZ )
94 fsumparts.c . . . . . . . . . . 11  |-  ( k  =  ( j  +  1 )  ->  ( A  =  C  /\  V  =  X )
)
95 oveq12 5955 . . . . . . . . . . 11  |-  ( ( A  =  C  /\  V  =  X )  ->  ( A  x.  V
)  =  ( C  x.  X ) )
9694, 95syl 14 . . . . . . . . . 10  |-  ( k  =  ( j  +  1 )  ->  ( A  x.  V )  =  ( C  x.  X ) )
9793, 49, 52, 81, 96fsumshftm 11789 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( ( M  + 
1 ) ... N
) ( A  x.  V )  =  sum_ j  e.  ( (
( M  +  1 )  -  1 ) ... ( N  - 
1 ) ) ( C  x.  X ) )
9892, 97eqtr4d 2241 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( C  x.  X
)  =  sum_ k  e.  ( ( M  + 
1 ) ... N
) ( A  x.  V ) )
99 fzoval 10272 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
( M  +  1 )..^ N )  =  ( ( M  + 
1 ) ... ( N  -  1 ) ) )
10052, 99syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( M  +  1 )..^ N )  =  ( ( M  +  1 ) ... ( N  -  1 ) ) )
101100sumeq1d 11710 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( ( M  + 
1 )..^ N ) ( A  x.  V
)  =  sum_ k  e.  ( ( M  + 
1 ) ... ( N  -  1 ) ) ( A  x.  V ) )
102101oveq1d 5961 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V )  +  ( E  x.  Z
) )  =  (
sum_ k  e.  ( ( M  +  1 ) ... ( N  -  1 ) ) ( A  x.  V
)  +  ( E  x.  Z ) ) )
10383, 98, 1023eqtr4d 2248 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( C  x.  X
)  =  ( sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V )  +  ( E  x.  Z
) ) )
10465, 75, 103comraddd 8231 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( C  x.  X
)  =  ( ( E  x.  Z )  +  sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V ) ) )
105104oveq1d 5961 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ j  e.  ( M..^ N ) ( C  x.  X )  -  sum_ j  e.  ( M..^ N ) ( B  x.  X ) )  =  ( ( ( E  x.  Z )  +  sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V ) )  -  sum_ j  e.  ( M..^ N ) ( B  x.  X
) ) )
106 fzofzp1 10358 . . . . . . . . . 10  |-  ( j  e.  ( M..^ N
)  ->  ( j  +  1 )  e.  ( M ... N
) )
10794simpld 112 . . . . . . . . . . . 12  |-  ( k  =  ( j  +  1 )  ->  A  =  C )
108107eleq1d 2274 . . . . . . . . . . 11  |-  ( k  =  ( j  +  1 )  ->  ( A  e.  CC  <->  C  e.  CC ) )
109108rspccva 2876 . . . . . . . . . 10  |-  ( ( A. k  e.  ( M ... N ) A  e.  CC  /\  ( j  +  1 )  e.  ( M ... N ) )  ->  C  e.  CC )
11030, 106, 109syl2an 289 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  C  e.  CC )
111 elfzofz 10287 . . . . . . . . . 10  |-  ( j  e.  ( M..^ N
)  ->  j  e.  ( M ... N ) )
112 fsumparts.b . . . . . . . . . . . . 13  |-  ( k  =  j  ->  ( A  =  B  /\  V  =  W )
)
113112simpld 112 . . . . . . . . . . . 12  |-  ( k  =  j  ->  A  =  B )
114113eleq1d 2274 . . . . . . . . . . 11  |-  ( k  =  j  ->  ( A  e.  CC  <->  B  e.  CC ) )
115114rspccva 2876 . . . . . . . . . 10  |-  ( ( A. k  e.  ( M ... N ) A  e.  CC  /\  j  e.  ( M ... N ) )  ->  B  e.  CC )
11630, 111, 115syl2an 289 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  B  e.  CC )
11794simprd 114 . . . . . . . . . . . 12  |-  ( k  =  ( j  +  1 )  ->  V  =  X )
118117eleq1d 2274 . . . . . . . . . . 11  |-  ( k  =  ( j  +  1 )  ->  ( V  e.  CC  <->  X  e.  CC ) )
119118rspccva 2876 . . . . . . . . . 10  |-  ( ( A. k  e.  ( M ... N ) V  e.  CC  /\  ( j  +  1 )  e.  ( M ... N ) )  ->  X  e.  CC )
12035, 106, 119syl2an 289 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  X  e.  CC )
121110, 116, 120subdird 8489 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( ( C  -  B )  x.  X )  =  ( ( C  x.  X
)  -  ( B  x.  X ) ) )
122121sumeq2dv 11712 . . . . . . 7  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( ( C  -  B
)  x.  X )  =  sum_ j  e.  ( M..^ N ) ( ( C  x.  X
)  -  ( B  x.  X ) ) )
123 fzofig 10579 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M..^ N )  e.  Fin )
12447, 51, 123syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( M..^ N )  e.  Fin )
125110, 120mulcld 8095 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( C  x.  X )  e.  CC )
126116, 120mulcld 8095 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( B  x.  X )  e.  CC )
127124, 125, 126fsumsub 11796 . . . . . . 7  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( ( C  x.  X
)  -  ( B  x.  X ) )  =  ( sum_ j  e.  ( M..^ N ) ( C  x.  X
)  -  sum_ j  e.  ( M..^ N ) ( B  x.  X
) ) )
128122, 127eqtrd 2238 . . . . . 6  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( ( C  -  B
)  x.  X )  =  ( sum_ j  e.  ( M..^ N ) ( C  x.  X
)  -  sum_ j  e.  ( M..^ N ) ( B  x.  X
) ) )
129128adantr 276 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( ( C  -  B )  x.  X
)  =  ( sum_ j  e.  ( M..^ N ) ( C  x.  X )  -  sum_ j  e.  ( M..^ N ) ( B  x.  X ) ) )
130124, 126fsumcl 11744 . . . . . . 7  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( B  x.  X )  e.  CC )
131130adantr 276 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( B  x.  X
)  e.  CC )
13275, 131, 65subsub3d 8415 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( E  x.  Z )  -  ( sum_ j  e.  ( M..^ N ) ( B  x.  X
)  -  sum_ k  e.  ( ( M  + 
1 )..^ N ) ( A  x.  V
) ) )  =  ( ( ( E  x.  Z )  + 
sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V ) )  -  sum_ j  e.  ( M..^ N ) ( B  x.  X
) ) )
133105, 129, 1323eqtr4d 2248 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( ( C  -  B )  x.  X
)  =  ( ( E  x.  Z )  -  ( sum_ j  e.  ( M..^ N ) ( B  x.  X
)  -  sum_ k  e.  ( ( M  + 
1 )..^ N ) ( A  x.  V
) ) ) )
134133oveq2d 5962 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (
( E  x.  Z
)  -  ( D  x.  Y ) )  -  sum_ j  e.  ( M..^ N ) ( ( C  -  B
)  x.  X ) )  =  ( ( ( E  x.  Z
)  -  ( D  x.  Y ) )  -  ( ( E  x.  Z )  -  ( sum_ j  e.  ( M..^ N ) ( B  x.  X )  -  sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V ) ) ) ) )
13537adantr 276 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( D  x.  Y )  e.  CC )
136131, 65subcld 8385 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ j  e.  ( M..^ N ) ( B  x.  X )  -  sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V ) )  e.  CC )
13775, 135, 136nnncan1d 8419 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (
( E  x.  Z
)  -  ( D  x.  Y ) )  -  ( ( E  x.  Z )  -  ( sum_ j  e.  ( M..^ N ) ( B  x.  X )  -  sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V ) ) ) )  =  ( ( sum_ j  e.  ( M..^ N ) ( B  x.  X
)  -  sum_ k  e.  ( ( M  + 
1 )..^ N ) ( A  x.  V
) )  -  ( D  x.  Y )
) )
13865, 135addcomd 8225 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V )  +  ( D  x.  Y
) )  =  ( ( D  x.  Y
)  +  sum_ k  e.  ( ( M  + 
1 )..^ N ) ( A  x.  V
) ) )
139 eluzp1m1 9674 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( N  -  1 )  e.  ( ZZ>= `  M ) )
14047, 139sylan 283 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( N  -  1 )  e.  ( ZZ>= `  M )
)
14185eleq2d 2275 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( k  e.  ( M..^ N )  <-> 
k  e.  ( M ... ( N  - 
1 ) ) ) )
142141biimpar 297 . . . . . . . . . 10  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  k  e.  ( M..^ N ) )
143142, 63syldan 282 . . . . . . . . 9  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  k  e.  ( M ... ( N  -  1 ) ) )  ->  ( A  x.  V )  e.  CC )
144140, 143, 18fsum1p 11762 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( M ... ( N  -  1 ) ) ( A  x.  V )  =  ( ( D  x.  Y
)  +  sum_ k  e.  ( ( M  + 
1 ) ... ( N  -  1 ) ) ( A  x.  V ) ) )
14585sumeq1d 11710 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( M..^ N ) ( A  x.  V
)  =  sum_ k  e.  ( M ... ( N  -  1 ) ) ( A  x.  V ) )
146101oveq2d 5962 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( D  x.  Y )  +  sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V ) )  =  ( ( D  x.  Y )  +  sum_ k  e.  ( ( M  +  1 ) ... ( N  -  1 ) ) ( A  x.  V
) ) )
147144, 145, 1463eqtr4d 2248 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ k  e.  ( M..^ N ) ( A  x.  V
)  =  ( ( D  x.  Y )  +  sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V ) ) )
148138, 147eqtr4d 2241 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V )  +  ( D  x.  Y
) )  =  sum_ k  e.  ( M..^ N ) ( A  x.  V ) )
149 oveq12 5955 . . . . . . . 8  |-  ( ( A  =  B  /\  V  =  W )  ->  ( A  x.  V
)  =  ( B  x.  W ) )
150112, 149syl 14 . . . . . . 7  |-  ( k  =  j  ->  ( A  x.  V )  =  ( B  x.  W ) )
151150cbvsumv 11705 . . . . . 6  |-  sum_ k  e.  ( M..^ N ) ( A  x.  V
)  =  sum_ j  e.  ( M..^ N ) ( B  x.  W
)
152148, 151eqtrdi 2254 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V )  +  ( D  x.  Y
) )  =  sum_ j  e.  ( M..^ N ) ( B  x.  W ) )
153152oveq2d 5962 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( sum_ j  e.  ( M..^ N ) ( B  x.  X )  -  ( sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V )  +  ( D  x.  Y ) ) )  =  ( sum_ j  e.  ( M..^ N ) ( B  x.  X
)  -  sum_ j  e.  ( M..^ N ) ( B  x.  W
) ) )
154131, 65, 135subsub4d 8416 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( sum_ j  e.  ( M..^ N ) ( B  x.  X )  -  sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V ) )  -  ( D  x.  Y ) )  =  ( sum_ j  e.  ( M..^ N ) ( B  x.  X )  -  ( sum_ k  e.  ( ( M  + 
1 )..^ N ) ( A  x.  V
)  +  ( D  x.  Y ) ) ) )
155112simprd 114 . . . . . . . . . . 11  |-  ( k  =  j  ->  V  =  W )
156155eleq1d 2274 . . . . . . . . . 10  |-  ( k  =  j  ->  ( V  e.  CC  <->  W  e.  CC ) )
157156rspccva 2876 . . . . . . . . 9  |-  ( ( A. k  e.  ( M ... N ) V  e.  CC  /\  j  e.  ( M ... N ) )  ->  W  e.  CC )
15835, 111, 157syl2an 289 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  W  e.  CC )
159116, 120, 158subdid 8488 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( B  x.  ( X  -  W
) )  =  ( ( B  x.  X
)  -  ( B  x.  W ) ) )
160159sumeq2dv 11712 . . . . . 6  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( B  x.  ( X  -  W ) )  =  sum_ j  e.  ( M..^ N ) ( ( B  x.  X
)  -  ( B  x.  W ) ) )
161116, 158mulcld 8095 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( B  x.  W )  e.  CC )
162124, 126, 161fsumsub 11796 . . . . . 6  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( ( B  x.  X
)  -  ( B  x.  W ) )  =  ( sum_ j  e.  ( M..^ N ) ( B  x.  X
)  -  sum_ j  e.  ( M..^ N ) ( B  x.  W
) ) )
163160, 162eqtrd 2238 . . . . 5  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( B  x.  ( X  -  W ) )  =  ( sum_ j  e.  ( M..^ N ) ( B  x.  X
)  -  sum_ j  e.  ( M..^ N ) ( B  x.  W
) ) )
164163adantr 276 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( B  x.  ( X  -  W )
)  =  ( sum_ j  e.  ( M..^ N ) ( B  x.  X )  -  sum_ j  e.  ( M..^ N ) ( B  x.  W ) ) )
165153, 154, 1643eqtr4d 2248 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( ( sum_ j  e.  ( M..^ N ) ( B  x.  X )  -  sum_ k  e.  ( ( M  +  1 )..^ N ) ( A  x.  V ) )  -  ( D  x.  Y ) )  = 
sum_ j  e.  ( M..^ N ) ( B  x.  ( X  -  W ) ) )
166134, 137, 1653eqtrrd 2243 . 2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  sum_ j  e.  ( M..^ N ) ( B  x.  ( X  -  W )
)  =  ( ( ( E  x.  Z
)  -  ( D  x.  Y ) )  -  sum_ j  e.  ( M..^ N ) ( ( C  -  B
)  x.  X ) ) )
167 uzp1 9684 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  =  M  \/  N  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
1689, 167syl 14 . 2  |-  ( ph  ->  ( N  =  M  \/  N  e.  (
ZZ>= `  ( M  + 
1 ) ) ) )
16945, 166, 168mpjaodan 800 1  |-  ( ph  -> 
sum_ j  e.  ( M..^ N ) ( B  x.  ( X  -  W ) )  =  ( ( ( E  x.  Z )  -  ( D  x.  Y ) )  -  sum_ j  e.  ( M..^ N ) ( ( C  -  B )  x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2176   A.wral 2484    C_ wss 3166   (/)c0 3460   ` cfv 5272  (class class class)co 5946   Fincfn 6829   CCcc 7925   0cc0 7927   1c1 7928    + caddc 7930    x. cmul 7932    - cmin 8245   ZZcz 9374   ZZ>=cuz 9650   ...cfz 10132  ..^cfzo 10266   sum_csu 11697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-isom 5281  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-frec 6479  df-1o 6504  df-oadd 6508  df-er 6622  df-en 6830  df-dom 6831  df-fin 6832  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-fz 10133  df-fzo 10267  df-seqfrec 10595  df-exp 10686  df-ihash 10923  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-clim 11623  df-sumdc 11698
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator