ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  muladd11r Unicode version

Theorem muladd11r 8230
Description: A simple product of sums expansion. (Contributed by AV, 30-Jul-2021.)
Assertion
Ref Expression
muladd11r  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  + 
1 )  x.  ( B  +  1 ) )  =  ( ( ( A  x.  B
)  +  ( A  +  B ) )  +  1 ) )

Proof of Theorem muladd11r
StepHypRef Expression
1 simpl 109 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
2 1cnd 8090 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  1  e.  CC )
31, 2addcomd 8225 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  1 )  =  ( 1  +  A ) )
4 simpr 110 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
54, 2addcomd 8225 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  +  1 )  =  ( 1  +  B ) )
63, 5oveq12d 5964 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  + 
1 )  x.  ( B  +  1 ) )  =  ( ( 1  +  A )  x.  ( 1  +  B ) ) )
7 muladd11 8207 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  x.  (
1  +  B ) )  =  ( ( 1  +  A )  +  ( B  +  ( A  x.  B
) ) ) )
8 mulcl 8054 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
94, 8addcld 8094 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  +  ( A  x.  B ) )  e.  CC )
102, 1, 9addassd 8097 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  +  ( B  +  ( A  x.  B ) ) )  =  ( 1  +  ( A  +  ( B  +  ( A  x.  B )
) ) ) )
111, 9addcld 8094 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  ( B  +  ( A  x.  B ) ) )  e.  CC )
122, 11addcomd 8225 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 1  +  ( A  +  ( B  +  ( A  x.  B ) ) ) )  =  ( ( A  +  ( B  +  ( A  x.  B ) ) )  +  1 ) )
131, 4, 8addassd 8097 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  +  ( A  x.  B ) )  =  ( A  +  ( B  +  ( A  x.  B
) ) ) )
14 addcl 8052 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
1514, 8addcomd 8225 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  +  ( A  x.  B ) )  =  ( ( A  x.  B )  +  ( A  +  B ) ) )
1613, 15eqtr3d 2240 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  ( B  +  ( A  x.  B ) ) )  =  ( ( A  x.  B )  +  ( A  +  B ) ) )
1716oveq1d 5961 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  ( B  +  ( A  x.  B )
) )  +  1 )  =  ( ( ( A  x.  B
)  +  ( A  +  B ) )  +  1 ) )
1810, 12, 173eqtrd 2242 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  +  ( B  +  ( A  x.  B ) ) )  =  ( ( ( A  x.  B
)  +  ( A  +  B ) )  +  1 ) )
196, 7, 183eqtrd 2242 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  + 
1 )  x.  ( B  +  1 ) )  =  ( ( ( A  x.  B
)  +  ( A  +  B ) )  +  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176  (class class class)co 5946   CCcc 7925   1c1 7928    + caddc 7930    x. cmul 7932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-resscn 8019  ax-1cn 8020  ax-icn 8022  ax-addcl 8023  ax-mulcl 8025  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-1rid 8034  ax-cnre 8038
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-iota 5233  df-fv 5280  df-ov 5949
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator