ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  muladd11r Unicode version

Theorem muladd11r 8115
Description: A simple product of sums expansion. (Contributed by AV, 30-Jul-2021.)
Assertion
Ref Expression
muladd11r  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  + 
1 )  x.  ( B  +  1 ) )  =  ( ( ( A  x.  B
)  +  ( A  +  B ) )  +  1 ) )

Proof of Theorem muladd11r
StepHypRef Expression
1 simpl 109 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
2 1cnd 7975 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  1  e.  CC )
31, 2addcomd 8110 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  1 )  =  ( 1  +  A ) )
4 simpr 110 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
54, 2addcomd 8110 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  +  1 )  =  ( 1  +  B ) )
63, 5oveq12d 5895 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  + 
1 )  x.  ( B  +  1 ) )  =  ( ( 1  +  A )  x.  ( 1  +  B ) ) )
7 muladd11 8092 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  x.  (
1  +  B ) )  =  ( ( 1  +  A )  +  ( B  +  ( A  x.  B
) ) ) )
8 mulcl 7940 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
94, 8addcld 7979 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  +  ( A  x.  B ) )  e.  CC )
102, 1, 9addassd 7982 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  +  ( B  +  ( A  x.  B ) ) )  =  ( 1  +  ( A  +  ( B  +  ( A  x.  B )
) ) ) )
111, 9addcld 7979 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  ( B  +  ( A  x.  B ) ) )  e.  CC )
122, 11addcomd 8110 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 1  +  ( A  +  ( B  +  ( A  x.  B ) ) ) )  =  ( ( A  +  ( B  +  ( A  x.  B ) ) )  +  1 ) )
131, 4, 8addassd 7982 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  +  ( A  x.  B ) )  =  ( A  +  ( B  +  ( A  x.  B
) ) ) )
14 addcl 7938 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
1514, 8addcomd 8110 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  +  ( A  x.  B ) )  =  ( ( A  x.  B )  +  ( A  +  B ) ) )
1613, 15eqtr3d 2212 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  ( B  +  ( A  x.  B ) ) )  =  ( ( A  x.  B )  +  ( A  +  B ) ) )
1716oveq1d 5892 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  ( B  +  ( A  x.  B )
) )  +  1 )  =  ( ( ( A  x.  B
)  +  ( A  +  B ) )  +  1 ) )
1810, 12, 173eqtrd 2214 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  +  ( B  +  ( A  x.  B ) ) )  =  ( ( ( A  x.  B
)  +  ( A  +  B ) )  +  1 ) )
196, 7, 183eqtrd 2214 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  + 
1 )  x.  ( B  +  1 ) )  =  ( ( ( A  x.  B
)  +  ( A  +  B ) )  +  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148  (class class class)co 5877   CCcc 7811   1c1 7814    + caddc 7816    x. cmul 7818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-resscn 7905  ax-1cn 7906  ax-icn 7908  ax-addcl 7909  ax-mulcl 7911  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-1rid 7920  ax-cnre 7924
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-iota 5180  df-fv 5226  df-ov 5880
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator