Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > muladd11r | Unicode version |
Description: A simple product of sums expansion. (Contributed by AV, 30-Jul-2021.) |
Ref | Expression |
---|---|
muladd11r |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . 4 | |
2 | 1cnd 7923 | . . . 4 | |
3 | 1, 2 | addcomd 8057 | . . 3 |
4 | simpr 109 | . . . 4 | |
5 | 4, 2 | addcomd 8057 | . . 3 |
6 | 3, 5 | oveq12d 5868 | . 2 |
7 | muladd11 8039 | . 2 | |
8 | mulcl 7888 | . . . . 5 | |
9 | 4, 8 | addcld 7926 | . . . 4 |
10 | 2, 1, 9 | addassd 7929 | . . 3 |
11 | 1, 9 | addcld 7926 | . . . 4 |
12 | 2, 11 | addcomd 8057 | . . 3 |
13 | 1, 4, 8 | addassd 7929 | . . . . 5 |
14 | addcl 7886 | . . . . . 6 | |
15 | 14, 8 | addcomd 8057 | . . . . 5 |
16 | 13, 15 | eqtr3d 2205 | . . . 4 |
17 | 16 | oveq1d 5865 | . . 3 |
18 | 10, 12, 17 | 3eqtrd 2207 | . 2 |
19 | 6, 7, 18 | 3eqtrd 2207 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 (class class class)co 5850 cc 7759 c1 7762 caddc 7764 cmul 7766 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-resscn 7853 ax-1cn 7854 ax-icn 7856 ax-addcl 7857 ax-mulcl 7859 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-1rid 7868 ax-cnre 7872 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-iota 5158 df-fv 5204 df-ov 5853 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |