| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > muladd11r | Unicode version | ||
| Description: A simple product of sums expansion. (Contributed by AV, 30-Jul-2021.) |
| Ref | Expression |
|---|---|
| muladd11r |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . 4
| |
| 2 | 1cnd 8059 |
. . . 4
| |
| 3 | 1, 2 | addcomd 8194 |
. . 3
|
| 4 | simpr 110 |
. . . 4
| |
| 5 | 4, 2 | addcomd 8194 |
. . 3
|
| 6 | 3, 5 | oveq12d 5943 |
. 2
|
| 7 | muladd11 8176 |
. 2
| |
| 8 | mulcl 8023 |
. . . . 5
| |
| 9 | 4, 8 | addcld 8063 |
. . . 4
|
| 10 | 2, 1, 9 | addassd 8066 |
. . 3
|
| 11 | 1, 9 | addcld 8063 |
. . . 4
|
| 12 | 2, 11 | addcomd 8194 |
. . 3
|
| 13 | 1, 4, 8 | addassd 8066 |
. . . . 5
|
| 14 | addcl 8021 |
. . . . . 6
| |
| 15 | 14, 8 | addcomd 8194 |
. . . . 5
|
| 16 | 13, 15 | eqtr3d 2231 |
. . . 4
|
| 17 | 16 | oveq1d 5940 |
. . 3
|
| 18 | 10, 12, 17 | 3eqtrd 2233 |
. 2
|
| 19 | 6, 7, 18 | 3eqtrd 2233 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7988 ax-1cn 7989 ax-icn 7991 ax-addcl 7992 ax-mulcl 7994 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-1rid 8003 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |