ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  muladd11r Unicode version

Theorem muladd11r 8263
Description: A simple product of sums expansion. (Contributed by AV, 30-Jul-2021.)
Assertion
Ref Expression
muladd11r  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  + 
1 )  x.  ( B  +  1 ) )  =  ( ( ( A  x.  B
)  +  ( A  +  B ) )  +  1 ) )

Proof of Theorem muladd11r
StepHypRef Expression
1 simpl 109 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
2 1cnd 8123 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  1  e.  CC )
31, 2addcomd 8258 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  1 )  =  ( 1  +  A ) )
4 simpr 110 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
54, 2addcomd 8258 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  +  1 )  =  ( 1  +  B ) )
63, 5oveq12d 5985 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  + 
1 )  x.  ( B  +  1 ) )  =  ( ( 1  +  A )  x.  ( 1  +  B ) ) )
7 muladd11 8240 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  x.  (
1  +  B ) )  =  ( ( 1  +  A )  +  ( B  +  ( A  x.  B
) ) ) )
8 mulcl 8087 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
94, 8addcld 8127 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  +  ( A  x.  B ) )  e.  CC )
102, 1, 9addassd 8130 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  +  ( B  +  ( A  x.  B ) ) )  =  ( 1  +  ( A  +  ( B  +  ( A  x.  B )
) ) ) )
111, 9addcld 8127 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  ( B  +  ( A  x.  B ) ) )  e.  CC )
122, 11addcomd 8258 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 1  +  ( A  +  ( B  +  ( A  x.  B ) ) ) )  =  ( ( A  +  ( B  +  ( A  x.  B ) ) )  +  1 ) )
131, 4, 8addassd 8130 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  +  ( A  x.  B ) )  =  ( A  +  ( B  +  ( A  x.  B
) ) ) )
14 addcl 8085 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
1514, 8addcomd 8258 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  +  ( A  x.  B ) )  =  ( ( A  x.  B )  +  ( A  +  B ) ) )
1613, 15eqtr3d 2242 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  ( B  +  ( A  x.  B ) ) )  =  ( ( A  x.  B )  +  ( A  +  B ) ) )
1716oveq1d 5982 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  ( B  +  ( A  x.  B )
) )  +  1 )  =  ( ( ( A  x.  B
)  +  ( A  +  B ) )  +  1 ) )
1810, 12, 173eqtrd 2244 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  +  ( B  +  ( A  x.  B ) ) )  =  ( ( ( A  x.  B
)  +  ( A  +  B ) )  +  1 ) )
196, 7, 183eqtrd 2244 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  + 
1 )  x.  ( B  +  1 ) )  =  ( ( ( A  x.  B
)  +  ( A  +  B ) )  +  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178  (class class class)co 5967   CCcc 7958   1c1 7961    + caddc 7963    x. cmul 7965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-resscn 8052  ax-1cn 8053  ax-icn 8055  ax-addcl 8056  ax-mulcl 8058  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-1rid 8067  ax-cnre 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-iota 5251  df-fv 5298  df-ov 5970
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator