ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  muladd11r Unicode version

Theorem muladd11r 8054
Description: A simple product of sums expansion. (Contributed by AV, 30-Jul-2021.)
Assertion
Ref Expression
muladd11r  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  + 
1 )  x.  ( B  +  1 ) )  =  ( ( ( A  x.  B
)  +  ( A  +  B ) )  +  1 ) )

Proof of Theorem muladd11r
StepHypRef Expression
1 simpl 108 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
2 1cnd 7915 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  1  e.  CC )
31, 2addcomd 8049 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  1 )  =  ( 1  +  A ) )
4 simpr 109 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
54, 2addcomd 8049 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  +  1 )  =  ( 1  +  B ) )
63, 5oveq12d 5860 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  + 
1 )  x.  ( B  +  1 ) )  =  ( ( 1  +  A )  x.  ( 1  +  B ) ) )
7 muladd11 8031 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  x.  (
1  +  B ) )  =  ( ( 1  +  A )  +  ( B  +  ( A  x.  B
) ) ) )
8 mulcl 7880 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
94, 8addcld 7918 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  +  ( A  x.  B ) )  e.  CC )
102, 1, 9addassd 7921 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  +  ( B  +  ( A  x.  B ) ) )  =  ( 1  +  ( A  +  ( B  +  ( A  x.  B )
) ) ) )
111, 9addcld 7918 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  ( B  +  ( A  x.  B ) ) )  e.  CC )
122, 11addcomd 8049 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 1  +  ( A  +  ( B  +  ( A  x.  B ) ) ) )  =  ( ( A  +  ( B  +  ( A  x.  B ) ) )  +  1 ) )
131, 4, 8addassd 7921 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  +  ( A  x.  B ) )  =  ( A  +  ( B  +  ( A  x.  B
) ) ) )
14 addcl 7878 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
1514, 8addcomd 8049 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  +  ( A  x.  B ) )  =  ( ( A  x.  B )  +  ( A  +  B ) ) )
1613, 15eqtr3d 2200 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  ( B  +  ( A  x.  B ) ) )  =  ( ( A  x.  B )  +  ( A  +  B ) ) )
1716oveq1d 5857 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  ( B  +  ( A  x.  B )
) )  +  1 )  =  ( ( ( A  x.  B
)  +  ( A  +  B ) )  +  1 ) )
1810, 12, 173eqtrd 2202 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  +  ( B  +  ( A  x.  B ) ) )  =  ( ( ( A  x.  B
)  +  ( A  +  B ) )  +  1 ) )
196, 7, 183eqtrd 2202 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  + 
1 )  x.  ( B  +  1 ) )  =  ( ( ( A  x.  B
)  +  ( A  +  B ) )  +  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136  (class class class)co 5842   CCcc 7751   1c1 7754    + caddc 7756    x. cmul 7758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-resscn 7845  ax-1cn 7846  ax-icn 7848  ax-addcl 7849  ax-mulcl 7851  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-1rid 7860  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator