ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashfz Unicode version

Theorem hashfz 10892
Description: Value of the numeric cardinality of a nonempty integer range. (Contributed by Stefan O'Rear, 12-Sep-2014.) (Proof shortened by Mario Carneiro, 15-Apr-2015.)
Assertion
Ref Expression
hashfz  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( `  ( A ... B ) )  =  ( ( B  -  A )  +  1 ) )

Proof of Theorem hashfz
StepHypRef Expression
1 eluzel2 9597 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  A  e.  ZZ )
2 eluzelz 9601 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  e.  ZZ )
3 1z 9343 . . . . . 6  |-  1  e.  ZZ
4 zsubcl 9358 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  A  e.  ZZ )  ->  ( 1  -  A
)  e.  ZZ )
53, 1, 4sylancr 414 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( 1  -  A )  e.  ZZ )
6 fzen 10109 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  (
1  -  A )  e.  ZZ )  -> 
( A ... B
)  ~~  ( ( A  +  ( 1  -  A ) ) ... ( B  +  ( 1  -  A
) ) ) )
71, 2, 5, 6syl3anc 1249 . . . 4  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A ... B )  ~~  (
( A  +  ( 1  -  A ) ) ... ( B  +  ( 1  -  A ) ) ) )
81zcnd 9440 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  A  e.  CC )
9 ax-1cn 7965 . . . . . 6  |-  1  e.  CC
10 pncan3 8227 . . . . . 6  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A  +  ( 1  -  A ) )  =  1 )
118, 9, 10sylancl 413 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A  +  ( 1  -  A ) )  =  1 )
12 1cnd 8035 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  1  e.  CC )
132zcnd 9440 . . . . . . 7  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  e.  CC )
1413, 8subcld 8330 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  -  A )  e.  CC )
1513, 12, 8addsub12d 8353 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  +  ( 1  -  A ) )  =  ( 1  +  ( B  -  A ) ) )
1612, 14, 15comraddd 8176 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  +  ( 1  -  A ) )  =  ( ( B  -  A )  +  1 ) )
1711, 16oveq12d 5936 . . . 4  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ( A  +  ( 1  -  A ) ) ... ( B  +  ( 1  -  A
) ) )  =  ( 1 ... (
( B  -  A
)  +  1 ) ) )
187, 17breqtrd 4055 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A ... B )  ~~  (
1 ... ( ( B  -  A )  +  1 ) ) )
191, 2fzfigd 10502 . . . 4  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A ... B )  e.  Fin )
20 1zzd 9344 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  1  e.  ZZ )
212, 1zsubcld 9444 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  -  A )  e.  ZZ )
2221peano2zd 9442 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ( B  -  A )  +  1 )  e.  ZZ )
2320, 22fzfigd 10502 . . . 4  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( 1 ... ( ( B  -  A )  +  1 ) )  e. 
Fin )
24 hashen 10855 . . . 4  |-  ( ( ( A ... B
)  e.  Fin  /\  ( 1 ... (
( B  -  A
)  +  1 ) )  e.  Fin )  ->  ( ( `  ( A ... B ) )  =  ( `  (
1 ... ( ( B  -  A )  +  1 ) ) )  <-> 
( A ... B
)  ~~  ( 1 ... ( ( B  -  A )  +  1 ) ) ) )
2519, 23, 24syl2anc 411 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ( `  ( A ... B
) )  =  ( `  ( 1 ... (
( B  -  A
)  +  1 ) ) )  <->  ( A ... B )  ~~  (
1 ... ( ( B  -  A )  +  1 ) ) ) )
2618, 25mpbird 167 . 2  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( `  ( A ... B ) )  =  ( `  (
1 ... ( ( B  -  A )  +  1 ) ) ) )
27 uznn0sub 9624 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  -  A )  e.  NN0 )
28 peano2nn0 9280 . . 3  |-  ( ( B  -  A )  e.  NN0  ->  ( ( B  -  A )  +  1 )  e. 
NN0 )
29 hashfz1 10854 . . 3  |-  ( ( ( B  -  A
)  +  1 )  e.  NN0  ->  ( `  (
1 ... ( ( B  -  A )  +  1 ) ) )  =  ( ( B  -  A )  +  1 ) )
3027, 28, 293syl 17 . 2  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( `  (
1 ... ( ( B  -  A )  +  1 ) ) )  =  ( ( B  -  A )  +  1 ) )
3126, 30eqtrd 2226 1  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( `  ( A ... B ) )  =  ( ( B  -  A )  +  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2164   class class class wbr 4029   ` cfv 5254  (class class class)co 5918    ~~ cen 6792   Fincfn 6794   CCcc 7870   1c1 7873    + caddc 7875    - cmin 8190   NN0cn0 9240   ZZcz 9317   ZZ>=cuz 9592   ...cfz 10074  ♯chash 10846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-ihash 10847
This theorem is referenced by:  hashfzo  10893  hashfzp1  10895  hashfz0  10896  gausslemma2dlem5  15182
  Copyright terms: Public domain W3C validator