| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashfz | Unicode version | ||
| Description: Value of the numeric cardinality of a nonempty integer range. (Contributed by Stefan O'Rear, 12-Sep-2014.) (Proof shortened by Mario Carneiro, 15-Apr-2015.) |
| Ref | Expression |
|---|---|
| hashfz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzel2 9655 |
. . . . 5
| |
| 2 | eluzelz 9659 |
. . . . 5
| |
| 3 | 1z 9400 |
. . . . . 6
| |
| 4 | zsubcl 9415 |
. . . . . 6
| |
| 5 | 3, 1, 4 | sylancr 414 |
. . . . 5
|
| 6 | fzen 10167 |
. . . . 5
| |
| 7 | 1, 2, 5, 6 | syl3anc 1250 |
. . . 4
|
| 8 | 1 | zcnd 9498 |
. . . . . 6
|
| 9 | ax-1cn 8020 |
. . . . . 6
| |
| 10 | pncan3 8282 |
. . . . . 6
| |
| 11 | 8, 9, 10 | sylancl 413 |
. . . . 5
|
| 12 | 1cnd 8090 |
. . . . . 6
| |
| 13 | 2 | zcnd 9498 |
. . . . . . 7
|
| 14 | 13, 8 | subcld 8385 |
. . . . . 6
|
| 15 | 13, 12, 8 | addsub12d 8408 |
. . . . . 6
|
| 16 | 12, 14, 15 | comraddd 8231 |
. . . . 5
|
| 17 | 11, 16 | oveq12d 5964 |
. . . 4
|
| 18 | 7, 17 | breqtrd 4071 |
. . 3
|
| 19 | 1, 2 | fzfigd 10578 |
. . . 4
|
| 20 | 1zzd 9401 |
. . . . 5
| |
| 21 | 2, 1 | zsubcld 9502 |
. . . . . 6
|
| 22 | 21 | peano2zd 9500 |
. . . . 5
|
| 23 | 20, 22 | fzfigd 10578 |
. . . 4
|
| 24 | hashen 10931 |
. . . 4
| |
| 25 | 19, 23, 24 | syl2anc 411 |
. . 3
|
| 26 | 18, 25 | mpbird 167 |
. 2
|
| 27 | uznn0sub 9682 |
. . 3
| |
| 28 | peano2nn0 9337 |
. . 3
| |
| 29 | hashfz1 10930 |
. . 3
| |
| 30 | 27, 28, 29 | 3syl 17 |
. 2
|
| 31 | 26, 30 | eqtrd 2238 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-iord 4414 df-on 4416 df-ilim 4417 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-frec 6479 df-1o 6504 df-er 6622 df-en 6830 df-dom 6831 df-fin 6832 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-inn 9039 df-n0 9298 df-z 9375 df-uz 9651 df-fz 10133 df-ihash 10923 |
| This theorem is referenced by: hashfzo 10969 hashfzp1 10971 hashfz0 10972 0sgmppw 15498 gausslemma2dlem5 15576 |
| Copyright terms: Public domain | W3C validator |