ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashfz Unicode version

Theorem hashfz 10599
Description: Value of the numeric cardinality of a nonempty integer range. (Contributed by Stefan O'Rear, 12-Sep-2014.) (Proof shortened by Mario Carneiro, 15-Apr-2015.)
Assertion
Ref Expression
hashfz  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( `  ( A ... B ) )  =  ( ( B  -  A )  +  1 ) )

Proof of Theorem hashfz
StepHypRef Expression
1 eluzel2 9355 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  A  e.  ZZ )
2 eluzelz 9359 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  e.  ZZ )
3 1z 9104 . . . . . 6  |-  1  e.  ZZ
4 zsubcl 9119 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  A  e.  ZZ )  ->  ( 1  -  A
)  e.  ZZ )
53, 1, 4sylancr 411 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( 1  -  A )  e.  ZZ )
6 fzen 9854 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  (
1  -  A )  e.  ZZ )  -> 
( A ... B
)  ~~  ( ( A  +  ( 1  -  A ) ) ... ( B  +  ( 1  -  A
) ) ) )
71, 2, 5, 6syl3anc 1217 . . . 4  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A ... B )  ~~  (
( A  +  ( 1  -  A ) ) ... ( B  +  ( 1  -  A ) ) ) )
81zcnd 9198 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  A  e.  CC )
9 ax-1cn 7737 . . . . . 6  |-  1  e.  CC
10 pncan3 7994 . . . . . 6  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A  +  ( 1  -  A ) )  =  1 )
118, 9, 10sylancl 410 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A  +  ( 1  -  A ) )  =  1 )
12 1cnd 7806 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  1  e.  CC )
132zcnd 9198 . . . . . . 7  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  e.  CC )
1413, 8subcld 8097 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  -  A )  e.  CC )
1513, 12, 8addsub12d 8120 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  +  ( 1  -  A ) )  =  ( 1  +  ( B  -  A ) ) )
1612, 14, 15comraddd 7943 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  +  ( 1  -  A ) )  =  ( ( B  -  A )  +  1 ) )
1711, 16oveq12d 5800 . . . 4  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ( A  +  ( 1  -  A ) ) ... ( B  +  ( 1  -  A
) ) )  =  ( 1 ... (
( B  -  A
)  +  1 ) ) )
187, 17breqtrd 3962 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A ... B )  ~~  (
1 ... ( ( B  -  A )  +  1 ) ) )
191, 2fzfigd 10235 . . . 4  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A ... B )  e.  Fin )
20 1zzd 9105 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  1  e.  ZZ )
212, 1zsubcld 9202 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  -  A )  e.  ZZ )
2221peano2zd 9200 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ( B  -  A )  +  1 )  e.  ZZ )
2320, 22fzfigd 10235 . . . 4  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( 1 ... ( ( B  -  A )  +  1 ) )  e. 
Fin )
24 hashen 10562 . . . 4  |-  ( ( ( A ... B
)  e.  Fin  /\  ( 1 ... (
( B  -  A
)  +  1 ) )  e.  Fin )  ->  ( ( `  ( A ... B ) )  =  ( `  (
1 ... ( ( B  -  A )  +  1 ) ) )  <-> 
( A ... B
)  ~~  ( 1 ... ( ( B  -  A )  +  1 ) ) ) )
2519, 23, 24syl2anc 409 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ( `  ( A ... B
) )  =  ( `  ( 1 ... (
( B  -  A
)  +  1 ) ) )  <->  ( A ... B )  ~~  (
1 ... ( ( B  -  A )  +  1 ) ) ) )
2618, 25mpbird 166 . 2  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( `  ( A ... B ) )  =  ( `  (
1 ... ( ( B  -  A )  +  1 ) ) ) )
27 uznn0sub 9381 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  -  A )  e.  NN0 )
28 peano2nn0 9041 . . 3  |-  ( ( B  -  A )  e.  NN0  ->  ( ( B  -  A )  +  1 )  e. 
NN0 )
29 hashfz1 10561 . . 3  |-  ( ( ( B  -  A
)  +  1 )  e.  NN0  ->  ( `  (
1 ... ( ( B  -  A )  +  1 ) ) )  =  ( ( B  -  A )  +  1 ) )
3027, 28, 293syl 17 . 2  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( `  (
1 ... ( ( B  -  A )  +  1 ) ) )  =  ( ( B  -  A )  +  1 ) )
3126, 30eqtrd 2173 1  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( `  ( A ... B ) )  =  ( ( B  -  A )  +  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1332    e. wcel 1481   class class class wbr 3937   ` cfv 5131  (class class class)co 5782    ~~ cen 6640   Fincfn 6642   CCcc 7642   1c1 7645    + caddc 7647    - cmin 7957   NN0cn0 9001   ZZcz 9078   ZZ>=cuz 9350   ...cfz 9821  ♯chash 10553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-1o 6321  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822  df-ihash 10554
This theorem is referenced by:  hashfzo  10600  hashfzp1  10602  hashfz0  10603
  Copyright terms: Public domain W3C validator