ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashfz Unicode version

Theorem hashfz 10756
Description: Value of the numeric cardinality of a nonempty integer range. (Contributed by Stefan O'Rear, 12-Sep-2014.) (Proof shortened by Mario Carneiro, 15-Apr-2015.)
Assertion
Ref Expression
hashfz  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( `  ( A ... B ) )  =  ( ( B  -  A )  +  1 ) )

Proof of Theorem hashfz
StepHypRef Expression
1 eluzel2 9492 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  A  e.  ZZ )
2 eluzelz 9496 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  e.  ZZ )
3 1z 9238 . . . . . 6  |-  1  e.  ZZ
4 zsubcl 9253 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  A  e.  ZZ )  ->  ( 1  -  A
)  e.  ZZ )
53, 1, 4sylancr 412 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( 1  -  A )  e.  ZZ )
6 fzen 9999 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  (
1  -  A )  e.  ZZ )  -> 
( A ... B
)  ~~  ( ( A  +  ( 1  -  A ) ) ... ( B  +  ( 1  -  A
) ) ) )
71, 2, 5, 6syl3anc 1233 . . . 4  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A ... B )  ~~  (
( A  +  ( 1  -  A ) ) ... ( B  +  ( 1  -  A ) ) ) )
81zcnd 9335 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  A  e.  CC )
9 ax-1cn 7867 . . . . . 6  |-  1  e.  CC
10 pncan3 8127 . . . . . 6  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A  +  ( 1  -  A ) )  =  1 )
118, 9, 10sylancl 411 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A  +  ( 1  -  A ) )  =  1 )
12 1cnd 7936 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  1  e.  CC )
132zcnd 9335 . . . . . . 7  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  e.  CC )
1413, 8subcld 8230 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  -  A )  e.  CC )
1513, 12, 8addsub12d 8253 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  +  ( 1  -  A ) )  =  ( 1  +  ( B  -  A ) ) )
1612, 14, 15comraddd 8076 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  +  ( 1  -  A ) )  =  ( ( B  -  A )  +  1 ) )
1711, 16oveq12d 5871 . . . 4  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ( A  +  ( 1  -  A ) ) ... ( B  +  ( 1  -  A
) ) )  =  ( 1 ... (
( B  -  A
)  +  1 ) ) )
187, 17breqtrd 4015 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A ... B )  ~~  (
1 ... ( ( B  -  A )  +  1 ) ) )
191, 2fzfigd 10387 . . . 4  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A ... B )  e.  Fin )
20 1zzd 9239 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  1  e.  ZZ )
212, 1zsubcld 9339 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  -  A )  e.  ZZ )
2221peano2zd 9337 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ( B  -  A )  +  1 )  e.  ZZ )
2320, 22fzfigd 10387 . . . 4  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( 1 ... ( ( B  -  A )  +  1 ) )  e. 
Fin )
24 hashen 10718 . . . 4  |-  ( ( ( A ... B
)  e.  Fin  /\  ( 1 ... (
( B  -  A
)  +  1 ) )  e.  Fin )  ->  ( ( `  ( A ... B ) )  =  ( `  (
1 ... ( ( B  -  A )  +  1 ) ) )  <-> 
( A ... B
)  ~~  ( 1 ... ( ( B  -  A )  +  1 ) ) ) )
2519, 23, 24syl2anc 409 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ( `  ( A ... B
) )  =  ( `  ( 1 ... (
( B  -  A
)  +  1 ) ) )  <->  ( A ... B )  ~~  (
1 ... ( ( B  -  A )  +  1 ) ) ) )
2618, 25mpbird 166 . 2  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( `  ( A ... B ) )  =  ( `  (
1 ... ( ( B  -  A )  +  1 ) ) ) )
27 uznn0sub 9518 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  -  A )  e.  NN0 )
28 peano2nn0 9175 . . 3  |-  ( ( B  -  A )  e.  NN0  ->  ( ( B  -  A )  +  1 )  e. 
NN0 )
29 hashfz1 10717 . . 3  |-  ( ( ( B  -  A
)  +  1 )  e.  NN0  ->  ( `  (
1 ... ( ( B  -  A )  +  1 ) ) )  =  ( ( B  -  A )  +  1 ) )
3027, 28, 293syl 17 . 2  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( `  (
1 ... ( ( B  -  A )  +  1 ) ) )  =  ( ( B  -  A )  +  1 ) )
3126, 30eqtrd 2203 1  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( `  ( A ... B ) )  =  ( ( B  -  A )  +  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348    e. wcel 2141   class class class wbr 3989   ` cfv 5198  (class class class)co 5853    ~~ cen 6716   Fincfn 6718   CCcc 7772   1c1 7775    + caddc 7777    - cmin 8090   NN0cn0 9135   ZZcz 9212   ZZ>=cuz 9487   ...cfz 9965  ♯chash 10709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-1o 6395  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966  df-ihash 10710
This theorem is referenced by:  hashfzo  10757  hashfzp1  10759  hashfz0  10760
  Copyright terms: Public domain W3C validator