ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clim2ser2 Unicode version

Theorem clim2ser2 11107
Description: The limit of an infinite series with an initial segment added. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.)
Hypotheses
Ref Expression
clim2ser.1  |-  Z  =  ( ZZ>= `  M )
clim2ser.2  |-  ( ph  ->  N  e.  Z )
clim2ser.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
clim2ser2.5  |-  ( ph  ->  seq ( N  + 
1 ) (  +  ,  F )  ~~>  A )
Assertion
Ref Expression
clim2ser2  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  ( A  +  (  seq M
(  +  ,  F
) `  N )
) )
Distinct variable groups:    A, k    k, F    k, M    k, N    ph, k    k, Z

Proof of Theorem clim2ser2
Dummy variables  j  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2139 . 2  |-  ( ZZ>= `  ( N  +  1
) )  =  (
ZZ>= `  ( N  + 
1 ) )
2 clim2ser.2 . . . . 5  |-  ( ph  ->  N  e.  Z )
3 clim2ser.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
42, 3eleqtrdi 2232 . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
5 peano2uz 9378 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  M )
)
64, 5syl 14 . . 3  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= `  M ) )
7 eluzelz 9335 . . 3  |-  ( ( N  +  1 )  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ZZ )
86, 7syl 14 . 2  |-  ( ph  ->  ( N  +  1 )  e.  ZZ )
9 clim2ser2.5 . 2  |-  ( ph  ->  seq ( N  + 
1 ) (  +  ,  F )  ~~>  A )
10 eluzel2 9331 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
114, 10syl 14 . . . 4  |-  ( ph  ->  M  e.  ZZ )
12 clim2ser.4 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
133, 11, 12serf 10247 . . 3  |-  ( ph  ->  seq M (  +  ,  F ) : Z --> CC )
1413, 2ffvelrnd 5556 . 2  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 N )  e.  CC )
15 seqex 10220 . . 3  |-  seq M
(  +  ,  F
)  e.  _V
1615a1i 9 . 2  |-  ( ph  ->  seq M (  +  ,  F )  e. 
_V )
176, 3eleqtrrdi 2233 . . . . . 6  |-  ( ph  ->  ( N  +  1 )  e.  Z )
183uztrn2 9343 . . . . . 6  |-  ( ( ( N  +  1 )  e.  Z  /\  k  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
k  e.  Z )
1917, 18sylan 281 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  k  e.  Z )
2019, 12syldan 280 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( F `  k )  e.  CC )
211, 8, 20serf 10247 . . 3  |-  ( ph  ->  seq ( N  + 
1 ) (  +  ,  F ) : ( ZZ>= `  ( N  +  1 ) ) --> CC )
2221ffvelrnda 5555 . 2  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq ( N  +  1
) (  +  ,  F ) `  j
)  e.  CC )
2314adantr 274 . . 3  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  +  ,  F ) `  N
)  e.  CC )
24 addcl 7745 . . . . 5  |-  ( ( k  e.  CC  /\  x  e.  CC )  ->  ( k  +  x
)  e.  CC )
2524adantl 275 . . . 4  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  ( k  e.  CC  /\  x  e.  CC ) )  -> 
( k  +  x
)  e.  CC )
26 addass 7750 . . . . 5  |-  ( ( k  e.  CC  /\  x  e.  CC  /\  y  e.  CC )  ->  (
( k  +  x
)  +  y )  =  ( k  +  ( x  +  y ) ) )
2726adantl 275 . . . 4  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  ( k  e.  CC  /\  x  e.  CC  /\  y  e.  CC ) )  -> 
( ( k  +  x )  +  y )  =  ( k  +  ( x  +  y ) ) )
28 simpr 109 . . . 4  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  j  e.  ( ZZ>= `  ( N  +  1 ) ) )
294adantr 274 . . . 4  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  N  e.  ( ZZ>= `  M )
)
303eleq2i 2206 . . . . . 6  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
3130, 12sylan2br 286 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
3231adantlr 468 . . . 4  |-  ( ( ( ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
3325, 27, 28, 29, 32seq3split 10252 . . 3  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  +  ,  F ) `  j
)  =  ( (  seq M (  +  ,  F ) `  N )  +  (  seq ( N  + 
1 ) (  +  ,  F ) `  j ) ) )
3423, 22, 33comraddd 7919 . 2  |-  ( (
ph  /\  j  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  (  seq M (  +  ,  F ) `  j
)  =  ( (  seq ( N  + 
1 ) (  +  ,  F ) `  j )  +  (  seq M (  +  ,  F ) `  N ) ) )
351, 8, 9, 14, 16, 22, 34climaddc1 11098 1  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  ( A  +  (  seq M
(  +  ,  F
) `  N )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962    = wceq 1331    e. wcel 1480   _Vcvv 2686   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   CCcc 7618   1c1 7621    + caddc 7623   ZZcz 9054   ZZ>=cuz 9326    seqcseq 10218    ~~> cli 11047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-fz 9791  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048
This theorem is referenced by:  iserex  11108
  Copyright terms: Public domain W3C validator