ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  add12 Unicode version

Theorem add12 8117
Description: Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
add12  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  +  ( B  +  C ) )  =  ( B  +  ( A  +  C ) ) )

Proof of Theorem add12
StepHypRef Expression
1 addcom 8096 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  =  ( B  +  A ) )
21oveq1d 5892 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  +  C
)  =  ( ( B  +  A )  +  C ) )
323adant3 1017 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( ( B  +  A )  +  C ) )
4 addass 7943 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( A  +  ( B  +  C
) ) )
5 addass 7943 . . 3  |-  ( ( B  e.  CC  /\  A  e.  CC  /\  C  e.  CC )  ->  (
( B  +  A
)  +  C )  =  ( B  +  ( A  +  C
) ) )
653com12 1207 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( B  +  A
)  +  C )  =  ( B  +  ( A  +  C
) ) )
73, 4, 63eqtr3d 2218 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  +  ( B  +  C ) )  =  ( B  +  ( A  +  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148  (class class class)co 5877   CCcc 7811    + caddc 7816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-addcom 7913  ax-addass 7915
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-iota 5180  df-fv 5226  df-ov 5880
This theorem is referenced by:  add4  8120  add12i  8122  add12d  8126
  Copyright terms: Public domain W3C validator