ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  add12 Unicode version

Theorem add12 8229
Description: Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
add12  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  +  ( B  +  C ) )  =  ( B  +  ( A  +  C ) ) )

Proof of Theorem add12
StepHypRef Expression
1 addcom 8208 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  =  ( B  +  A ) )
21oveq1d 5958 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  +  C
)  =  ( ( B  +  A )  +  C ) )
323adant3 1019 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( ( B  +  A )  +  C ) )
4 addass 8054 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( A  +  ( B  +  C
) ) )
5 addass 8054 . . 3  |-  ( ( B  e.  CC  /\  A  e.  CC  /\  C  e.  CC )  ->  (
( B  +  A
)  +  C )  =  ( B  +  ( A  +  C
) ) )
653com12 1209 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( B  +  A
)  +  C )  =  ( B  +  ( A  +  C
) ) )
73, 4, 63eqtr3d 2245 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  +  ( B  +  C ) )  =  ( B  +  ( A  +  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1372    e. wcel 2175  (class class class)co 5943   CCcc 7922    + caddc 7927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186  ax-addcom 8024  ax-addass 8026
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773  df-un 3169  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-iota 5231  df-fv 5278  df-ov 5946
This theorem is referenced by:  add4  8232  add12i  8234  add12d  8238
  Copyright terms: Public domain W3C validator