ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bdtrilem Unicode version

Theorem bdtrilem 11231
Description: Lemma for bdtri 11232. (Contributed by Steven Nguyen and Jim Kingdon, 17-May-2023.)
Assertion
Ref Expression
bdtrilem  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( abs `  ( A  -  C )
)  +  ( abs `  ( B  -  C
) ) )  <_ 
( C  +  ( abs `  ( ( A  +  B )  -  C ) ) ) )

Proof of Theorem bdtrilem
StepHypRef Expression
1 simp1l 1021 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  A  e.  RR )
2 simp3 999 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  C  e.  RR+ )
32rpred 9683 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  C  e.  RR )
41, 3resubcld 8328 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( A  -  C
)  e.  RR )
54resqcld 10665 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( A  -  C ) ^ 2 )  e.  RR )
6 2re 8978 . . . . . . . . . . . 12  |-  2  e.  RR
76a1i 9 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  2  e.  RR )
81recnd 7976 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  A  e.  CC )
92rpcnd 9685 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  C  e.  CC )
108, 9subcld 8258 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( A  -  C
)  e.  CC )
1110abscld 11174 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( abs `  ( A  -  C )
)  e.  RR )
12 simp2l 1023 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  B  e.  RR )
1312recnd 7976 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  B  e.  CC )
1413, 9subcld 8258 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( B  -  C
)  e.  CC )
1514abscld 11174 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( abs `  ( B  -  C )
)  e.  RR )
1611, 15remulcld 7978 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( abs `  ( A  -  C )
)  x.  ( abs `  ( B  -  C
) ) )  e.  RR )
177, 16remulcld 7978 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( 2  x.  (
( abs `  ( A  -  C )
)  x.  ( abs `  ( B  -  C
) ) ) )  e.  RR )
185, 17readdcld 7977 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A  -  C ) ^
2 )  +  ( 2  x.  ( ( abs `  ( A  -  C ) )  x.  ( abs `  ( B  -  C )
) ) ) )  e.  RR )
191, 12remulcld 7978 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( A  x.  B
)  e.  RR )
207, 19remulcld 7978 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( 2  x.  ( A  x.  B )
)  e.  RR )
218, 13addcld 7967 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( A  +  B
)  e.  CC )
2221, 9subcld 8258 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( A  +  B )  -  C
)  e.  CC )
2322abscld 11174 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( abs `  (
( A  +  B
)  -  C ) )  e.  RR )
243, 23remulcld 7978 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( C  x.  ( abs `  ( ( A  +  B )  -  C ) ) )  e.  RR )
257, 24remulcld 7978 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( 2  x.  ( C  x.  ( abs `  ( ( A  +  B )  -  C
) ) ) )  e.  RR )
2620, 25readdcld 7977 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( 2  x.  ( A  x.  B
) )  +  ( 2  x.  ( C  x.  ( abs `  (
( A  +  B
)  -  C ) ) ) ) )  e.  RR )
275, 26readdcld 7977 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A  -  C ) ^
2 )  +  ( ( 2  x.  ( A  x.  B )
)  +  ( 2  x.  ( C  x.  ( abs `  ( ( A  +  B )  -  C ) ) ) ) ) )  e.  RR )
2812, 3resubcld 8328 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( B  -  C
)  e.  RR )
2928resqcld 10665 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( B  -  C ) ^ 2 )  e.  RR )
3019, 24readdcld 7977 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( A  x.  B )  +  ( C  x.  ( abs `  ( ( A  +  B )  -  C
) ) ) )  e.  RR )
31 0le2 8998 . . . . . . . . . . . . 13  |-  0  <_  2
3231a1i 9 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  0  <_  2 )
338, 9, 13, 9mulsubd 8364 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( A  -  C )  x.  ( B  -  C )
)  =  ( ( ( A  x.  B
)  +  ( C  x.  C ) )  -  ( ( A  x.  C )  +  ( B  x.  C
) ) ) )
3419recnd 7976 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( A  x.  B
)  e.  CC )
359, 9mulcld 7968 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( C  x.  C
)  e.  CC )
368, 9mulcld 7968 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( A  x.  C
)  e.  CC )
3713, 9mulcld 7968 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( B  x.  C
)  e.  CC )
3836, 37addcld 7967 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( A  x.  C )  +  ( B  x.  C ) )  e.  CC )
3934, 35, 38addsubassd 8278 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A  x.  B )  +  ( C  x.  C
) )  -  (
( A  x.  C
)  +  ( B  x.  C ) ) )  =  ( ( A  x.  B )  +  ( ( C  x.  C )  -  ( ( A  x.  C )  +  ( B  x.  C ) ) ) ) )
4033, 39eqtrd 2210 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( A  -  C )  x.  ( B  -  C )
)  =  ( ( A  x.  B )  +  ( ( C  x.  C )  -  ( ( A  x.  C )  +  ( B  x.  C ) ) ) ) )
4140fveq2d 5515 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( abs `  (
( A  -  C
)  x.  ( B  -  C ) ) )  =  ( abs `  ( ( A  x.  B )  +  ( ( C  x.  C
)  -  ( ( A  x.  C )  +  ( B  x.  C ) ) ) ) ) )
4235, 38subcld 8258 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( C  x.  C )  -  (
( A  x.  C
)  +  ( B  x.  C ) ) )  e.  CC )
4334, 42abstrid 11189 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( abs `  (
( A  x.  B
)  +  ( ( C  x.  C )  -  ( ( A  x.  C )  +  ( B  x.  C
) ) ) ) )  <_  ( ( abs `  ( A  x.  B ) )  +  ( abs `  (
( C  x.  C
)  -  ( ( A  x.  C )  +  ( B  x.  C ) ) ) ) ) )
4441, 43eqbrtrd 4022 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( abs `  (
( A  -  C
)  x.  ( B  -  C ) ) )  <_  ( ( abs `  ( A  x.  B ) )  +  ( abs `  (
( C  x.  C
)  -  ( ( A  x.  C )  +  ( B  x.  C ) ) ) ) ) )
45 simp1r 1022 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  0  <_  A )
46 simp2r 1024 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  0  <_  B )
471, 12, 45, 46mulge0d 8568 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  0  <_  ( A  x.  B ) )
4819, 47absidd 11160 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( abs `  ( A  x.  B )
)  =  ( A  x.  B ) )
499, 21subcld 8258 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( C  -  ( A  +  B )
)  e.  CC )
5049, 9absmuld 11187 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( abs `  (
( C  -  ( A  +  B )
)  x.  C ) )  =  ( ( abs `  ( C  -  ( A  +  B ) ) )  x.  ( abs `  C
) ) )
519, 21, 9subdird 8362 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( C  -  ( A  +  B
) )  x.  C
)  =  ( ( C  x.  C )  -  ( ( A  +  B )  x.  C ) ) )
528, 13, 9adddird 7973 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( A  +  B )  x.  C
)  =  ( ( A  x.  C )  +  ( B  x.  C ) ) )
5352oveq2d 5885 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( C  x.  C )  -  (
( A  +  B
)  x.  C ) )  =  ( ( C  x.  C )  -  ( ( A  x.  C )  +  ( B  x.  C
) ) ) )
5451, 53eqtrd 2210 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( C  -  ( A  +  B
) )  x.  C
)  =  ( ( C  x.  C )  -  ( ( A  x.  C )  +  ( B  x.  C
) ) ) )
5554fveq2d 5515 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( abs `  (
( C  -  ( A  +  B )
)  x.  C ) )  =  ( abs `  ( ( C  x.  C )  -  (
( A  x.  C
)  +  ( B  x.  C ) ) ) ) )
569, 21abssubd 11186 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( abs `  ( C  -  ( A  +  B ) ) )  =  ( abs `  (
( A  +  B
)  -  C ) ) )
572rpge0d 9687 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  0  <_  C )
583, 57absidd 11160 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( abs `  C
)  =  C )
5956, 58oveq12d 5887 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( abs `  ( C  -  ( A  +  B ) ) )  x.  ( abs `  C
) )  =  ( ( abs `  (
( A  +  B
)  -  C ) )  x.  C ) )
6050, 55, 593eqtr3d 2218 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( abs `  (
( C  x.  C
)  -  ( ( A  x.  C )  +  ( B  x.  C ) ) ) )  =  ( ( abs `  ( ( A  +  B )  -  C ) )  x.  C ) )
6148, 60oveq12d 5887 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( abs `  ( A  x.  B )
)  +  ( abs `  ( ( C  x.  C )  -  (
( A  x.  C
)  +  ( B  x.  C ) ) ) ) )  =  ( ( A  x.  B )  +  ( ( abs `  (
( A  +  B
)  -  C ) )  x.  C ) ) )
6244, 61breqtrd 4026 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( abs `  (
( A  -  C
)  x.  ( B  -  C ) ) )  <_  ( ( A  x.  B )  +  ( ( abs `  ( ( A  +  B )  -  C
) )  x.  C
) ) )
6310, 14absmuld 11187 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( abs `  (
( A  -  C
)  x.  ( B  -  C ) ) )  =  ( ( abs `  ( A  -  C ) )  x.  ( abs `  ( B  -  C )
) ) )
6423recnd 7976 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( abs `  (
( A  +  B
)  -  C ) )  e.  CC )
6564, 9mulcomd 7969 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( abs `  (
( A  +  B
)  -  C ) )  x.  C )  =  ( C  x.  ( abs `  ( ( A  +  B )  -  C ) ) ) )
6665oveq2d 5885 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( A  x.  B )  +  ( ( abs `  (
( A  +  B
)  -  C ) )  x.  C ) )  =  ( ( A  x.  B )  +  ( C  x.  ( abs `  ( ( A  +  B )  -  C ) ) ) ) )
6762, 63, 663brtr3d 4031 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( abs `  ( A  -  C )
)  x.  ( abs `  ( B  -  C
) ) )  <_ 
( ( A  x.  B )  +  ( C  x.  ( abs `  ( ( A  +  B )  -  C
) ) ) ) )
6816, 30, 7, 32, 67lemul2ad 8886 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( 2  x.  (
( abs `  ( A  -  C )
)  x.  ( abs `  ( B  -  C
) ) ) )  <_  ( 2  x.  ( ( A  x.  B )  +  ( C  x.  ( abs `  ( ( A  +  B )  -  C
) ) ) ) ) )
697recnd 7976 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  2  e.  CC )
709, 64mulcld 7968 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( C  x.  ( abs `  ( ( A  +  B )  -  C ) ) )  e.  CC )
7169, 34, 70adddid 7972 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( 2  x.  (
( A  x.  B
)  +  ( C  x.  ( abs `  (
( A  +  B
)  -  C ) ) ) ) )  =  ( ( 2  x.  ( A  x.  B ) )  +  ( 2  x.  ( C  x.  ( abs `  ( ( A  +  B )  -  C
) ) ) ) ) )
7268, 71breqtrd 4026 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( 2  x.  (
( abs `  ( A  -  C )
)  x.  ( abs `  ( B  -  C
) ) ) )  <_  ( ( 2  x.  ( A  x.  B ) )  +  ( 2  x.  ( C  x.  ( abs `  ( ( A  +  B )  -  C
) ) ) ) ) )
7317, 26, 5, 72leadd2dd 8507 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A  -  C ) ^
2 )  +  ( 2  x.  ( ( abs `  ( A  -  C ) )  x.  ( abs `  ( B  -  C )
) ) ) )  <_  ( ( ( A  -  C ) ^ 2 )  +  ( ( 2  x.  ( A  x.  B
) )  +  ( 2  x.  ( C  x.  ( abs `  (
( A  +  B
)  -  C ) ) ) ) ) ) )
7418, 27, 29, 73leadd1dd 8506 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( A  -  C ) ^ 2 )  +  ( 2  x.  (
( abs `  ( A  -  C )
)  x.  ( abs `  ( B  -  C
) ) ) ) )  +  ( ( B  -  C ) ^ 2 ) )  <_  ( ( ( ( A  -  C
) ^ 2 )  +  ( ( 2  x.  ( A  x.  B ) )  +  ( 2  x.  ( C  x.  ( abs `  ( ( A  +  B )  -  C
) ) ) ) ) )  +  ( ( B  -  C
) ^ 2 ) ) )
755recnd 7976 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( A  -  C ) ^ 2 )  e.  CC )
7626recnd 7976 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( 2  x.  ( A  x.  B
) )  +  ( 2  x.  ( C  x.  ( abs `  (
( A  +  B
)  -  C ) ) ) ) )  e.  CC )
7729recnd 7976 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( B  -  C ) ^ 2 )  e.  CC )
7875, 76, 77add32d 8115 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( A  -  C ) ^ 2 )  +  ( ( 2  x.  ( A  x.  B
) )  +  ( 2  x.  ( C  x.  ( abs `  (
( A  +  B
)  -  C ) ) ) ) ) )  +  ( ( B  -  C ) ^ 2 ) )  =  ( ( ( ( A  -  C
) ^ 2 )  +  ( ( B  -  C ) ^
2 ) )  +  ( ( 2  x.  ( A  x.  B
) )  +  ( 2  x.  ( C  x.  ( abs `  (
( A  +  B
)  -  C ) ) ) ) ) ) )
7974, 78breqtrd 4026 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( A  -  C ) ^ 2 )  +  ( 2  x.  (
( abs `  ( A  -  C )
)  x.  ( abs `  ( B  -  C
) ) ) ) )  +  ( ( B  -  C ) ^ 2 ) )  <_  ( ( ( ( A  -  C
) ^ 2 )  +  ( ( B  -  C ) ^
2 ) )  +  ( ( 2  x.  ( A  x.  B
) )  +  ( 2  x.  ( C  x.  ( abs `  (
( A  +  B
)  -  C ) ) ) ) ) ) )
8075, 77addcld 7967 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A  -  C ) ^
2 )  +  ( ( B  -  C
) ^ 2 ) )  e.  CC )
8169, 34mulcld 7968 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( 2  x.  ( A  x.  B )
)  e.  CC )
8269, 70mulcld 7968 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( 2  x.  ( C  x.  ( abs `  ( ( A  +  B )  -  C
) ) ) )  e.  CC )
8380, 81, 82addassd 7970 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( ( A  -  C
) ^ 2 )  +  ( ( B  -  C ) ^
2 ) )  +  ( 2  x.  ( A  x.  B )
) )  +  ( 2  x.  ( C  x.  ( abs `  (
( A  +  B
)  -  C ) ) ) ) )  =  ( ( ( ( A  -  C
) ^ 2 )  +  ( ( B  -  C ) ^
2 ) )  +  ( ( 2  x.  ( A  x.  B
) )  +  ( 2  x.  ( C  x.  ( abs `  (
( A  +  B
)  -  C ) ) ) ) ) ) )
8479, 83breqtrrd 4028 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( A  -  C ) ^ 2 )  +  ( 2  x.  (
( abs `  ( A  -  C )
)  x.  ( abs `  ( B  -  C
) ) ) ) )  +  ( ( B  -  C ) ^ 2 ) )  <_  ( ( ( ( ( A  -  C ) ^ 2 )  +  ( ( B  -  C ) ^ 2 ) )  +  ( 2  x.  ( A  x.  B
) ) )  +  ( 2  x.  ( C  x.  ( abs `  ( ( A  +  B )  -  C
) ) ) ) ) )
858sqcld 10637 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( A ^ 2 )  e.  CC )
8669, 36mulcld 7968 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( 2  x.  ( A  x.  C )
)  e.  CC )
8785, 86subcld 8258 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) )  e.  CC )
889sqcld 10637 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( C ^ 2 )  e.  CC )
8987, 88addcld 7967 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) )  +  ( C ^ 2 ) )  e.  CC )
9089, 81addcld 7967 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) )  +  ( C ^ 2 ) )  +  ( 2  x.  ( A  x.  B ) ) )  e.  CC )
9113sqcld 10637 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( B ^ 2 )  e.  CC )
9269, 37mulcld 7968 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( 2  x.  ( B  x.  C )
)  e.  CC )
9391, 92subcld 8258 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( B ^
2 )  -  (
2  x.  ( B  x.  C ) ) )  e.  CC )
9490, 93addcld 7967 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) )  +  ( C ^
2 ) )  +  ( 2  x.  ( A  x.  B )
) )  +  ( ( B ^ 2 )  -  ( 2  x.  ( B  x.  C ) ) ) )  e.  CC )
9593, 88addcld 7967 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( B ^ 2 )  -  ( 2  x.  ( B  x.  C )
) )  +  ( C ^ 2 ) )  e.  CC )
9689, 95, 81add32d 8115 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) )  +  ( C ^
2 ) )  +  ( ( ( B ^ 2 )  -  ( 2  x.  ( B  x.  C )
) )  +  ( C ^ 2 ) ) )  +  ( 2  x.  ( A  x.  B ) ) )  =  ( ( ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) )  +  ( C ^ 2 ) )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( ( ( B ^ 2 )  -  ( 2  x.  ( B  x.  C
) ) )  +  ( C ^ 2 ) ) ) )
9790, 93, 88addassd 7970 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( ( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) )  +  ( C ^ 2 ) )  +  ( 2  x.  ( A  x.  B
) ) )  +  ( ( B ^
2 )  -  (
2  x.  ( B  x.  C ) ) ) )  +  ( C ^ 2 ) )  =  ( ( ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) )  +  ( C ^ 2 ) )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( ( ( B ^ 2 )  -  ( 2  x.  ( B  x.  C
) ) )  +  ( C ^ 2 ) ) ) )
9896, 97eqtr4d 2213 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) )  +  ( C ^
2 ) )  +  ( ( ( B ^ 2 )  -  ( 2  x.  ( B  x.  C )
) )  +  ( C ^ 2 ) ) )  +  ( 2  x.  ( A  x.  B ) ) )  =  ( ( ( ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) )  +  ( C ^ 2 ) )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( ( B ^ 2 )  -  ( 2  x.  ( B  x.  C
) ) ) )  +  ( C ^
2 ) ) )
9994, 88, 98comraddd 8104 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) )  +  ( C ^
2 ) )  +  ( ( ( B ^ 2 )  -  ( 2  x.  ( B  x.  C )
) )  +  ( C ^ 2 ) ) )  +  ( 2  x.  ( A  x.  B ) ) )  =  ( ( C ^ 2 )  +  ( ( ( ( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) )  +  ( C ^ 2 ) )  +  ( 2  x.  ( A  x.  B
) ) )  +  ( ( B ^
2 )  -  (
2  x.  ( B  x.  C ) ) ) ) ) )
10081, 93addcld 7967 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( 2  x.  ( A  x.  B
) )  +  ( ( B ^ 2 )  -  ( 2  x.  ( B  x.  C ) ) ) )  e.  CC )
10187, 100addcld 7967 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) )  +  ( ( 2  x.  ( A  x.  B )
)  +  ( ( B ^ 2 )  -  ( 2  x.  ( B  x.  C
) ) ) ) )  e.  CC )
10289, 81, 93addassd 7970 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) )  +  ( C ^
2 ) )  +  ( 2  x.  ( A  x.  B )
) )  +  ( ( B ^ 2 )  -  ( 2  x.  ( B  x.  C ) ) ) )  =  ( ( ( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) )  +  ( C ^ 2 ) )  +  ( ( 2  x.  ( A  x.  B ) )  +  ( ( B ^
2 )  -  (
2  x.  ( B  x.  C ) ) ) ) ) )
10387, 88addcomd 8098 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) )  +  ( C ^ 2 ) )  =  ( ( C ^ 2 )  +  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) ) ) )
104103oveq1d 5884 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) )  +  ( C ^ 2 ) )  +  ( ( 2  x.  ( A  x.  B )
)  +  ( ( B ^ 2 )  -  ( 2  x.  ( B  x.  C
) ) ) ) )  =  ( ( ( C ^ 2 )  +  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  +  ( ( 2  x.  ( A  x.  B ) )  +  ( ( B ^
2 )  -  (
2  x.  ( B  x.  C ) ) ) ) ) )
105102, 104eqtrd 2210 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) )  +  ( C ^
2 ) )  +  ( 2  x.  ( A  x.  B )
) )  +  ( ( B ^ 2 )  -  ( 2  x.  ( B  x.  C ) ) ) )  =  ( ( ( C ^ 2 )  +  ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) ) )  +  ( ( 2  x.  ( A  x.  B ) )  +  ( ( B ^
2 )  -  (
2  x.  ( B  x.  C ) ) ) ) ) )
10688, 87, 100addassd 7970 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( C ^ 2 )  +  ( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) ) )  +  ( ( 2  x.  ( A  x.  B )
)  +  ( ( B ^ 2 )  -  ( 2  x.  ( B  x.  C
) ) ) ) )  =  ( ( C ^ 2 )  +  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) )  +  ( ( 2  x.  ( A  x.  B
) )  +  ( ( B ^ 2 )  -  ( 2  x.  ( B  x.  C ) ) ) ) ) ) )
107105, 106eqtrd 2210 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) )  +  ( C ^
2 ) )  +  ( 2  x.  ( A  x.  B )
) )  +  ( ( B ^ 2 )  -  ( 2  x.  ( B  x.  C ) ) ) )  =  ( ( C ^ 2 )  +  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) )  +  ( ( 2  x.  ( A  x.  B
) )  +  ( ( B ^ 2 )  -  ( 2  x.  ( B  x.  C ) ) ) ) ) ) )
10888, 101, 107comraddd 8104 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) )  +  ( C ^
2 ) )  +  ( 2  x.  ( A  x.  B )
) )  +  ( ( B ^ 2 )  -  ( 2  x.  ( B  x.  C ) ) ) )  =  ( ( ( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) )  +  ( ( 2  x.  ( A  x.  B ) )  +  ( ( B ^ 2 )  -  ( 2  x.  ( B  x.  C )
) ) ) )  +  ( C ^
2 ) ) )
10985, 86, 93subadd23d 8280 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) )  +  ( ( B ^ 2 )  -  ( 2  x.  ( B  x.  C ) ) ) )  =  ( ( A ^ 2 )  +  ( ( ( B ^ 2 )  -  ( 2  x.  ( B  x.  C
) ) )  -  ( 2  x.  ( A  x.  C )
) ) ) )
11091, 92, 86subsub4d 8289 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( B ^ 2 )  -  ( 2  x.  ( B  x.  C )
) )  -  (
2  x.  ( A  x.  C ) ) )  =  ( ( B ^ 2 )  -  ( ( 2  x.  ( B  x.  C ) )  +  ( 2  x.  ( A  x.  C )
) ) ) )
11192, 86addcomd 8098 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( 2  x.  ( B  x.  C
) )  +  ( 2  x.  ( A  x.  C ) ) )  =  ( ( 2  x.  ( A  x.  C ) )  +  ( 2  x.  ( B  x.  C
) ) ) )
112111oveq2d 5885 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( B ^
2 )  -  (
( 2  x.  ( B  x.  C )
)  +  ( 2  x.  ( A  x.  C ) ) ) )  =  ( ( B ^ 2 )  -  ( ( 2  x.  ( A  x.  C ) )  +  ( 2  x.  ( B  x.  C )
) ) ) )
113110, 112eqtrd 2210 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( B ^ 2 )  -  ( 2  x.  ( B  x.  C )
) )  -  (
2  x.  ( A  x.  C ) ) )  =  ( ( B ^ 2 )  -  ( ( 2  x.  ( A  x.  C ) )  +  ( 2  x.  ( B  x.  C )
) ) ) )
114113oveq2d 5885 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( A ^
2 )  +  ( ( ( B ^
2 )  -  (
2  x.  ( B  x.  C ) ) )  -  ( 2  x.  ( A  x.  C ) ) ) )  =  ( ( A ^ 2 )  +  ( ( B ^ 2 )  -  ( ( 2  x.  ( A  x.  C
) )  +  ( 2  x.  ( B  x.  C ) ) ) ) ) )
115109, 114eqtrd 2210 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) )  +  ( ( B ^ 2 )  -  ( 2  x.  ( B  x.  C ) ) ) )  =  ( ( A ^ 2 )  +  ( ( B ^ 2 )  -  ( ( 2  x.  ( A  x.  C
) )  +  ( 2  x.  ( B  x.  C ) ) ) ) ) )
116115oveq2d 5885 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( 2  x.  ( A  x.  B
) )  +  ( ( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) )  +  ( ( B ^ 2 )  -  ( 2  x.  ( B  x.  C
) ) ) ) )  =  ( ( 2  x.  ( A  x.  B ) )  +  ( ( A ^ 2 )  +  ( ( B ^
2 )  -  (
( 2  x.  ( A  x.  C )
)  +  ( 2  x.  ( B  x.  C ) ) ) ) ) ) )
11787, 81, 93add12d 8114 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) )  +  ( ( 2  x.  ( A  x.  B )
)  +  ( ( B ^ 2 )  -  ( 2  x.  ( B  x.  C
) ) ) ) )  =  ( ( 2  x.  ( A  x.  B ) )  +  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) )  +  ( ( B ^
2 )  -  (
2  x.  ( B  x.  C ) ) ) ) ) )
11886, 92addcld 7967 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( 2  x.  ( A  x.  C
) )  +  ( 2  x.  ( B  x.  C ) ) )  e.  CC )
11991, 118subcld 8258 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( B ^
2 )  -  (
( 2  x.  ( A  x.  C )
)  +  ( 2  x.  ( B  x.  C ) ) ) )  e.  CC )
12085, 119addcld 7967 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( A ^
2 )  +  ( ( B ^ 2 )  -  ( ( 2  x.  ( A  x.  C ) )  +  ( 2  x.  ( B  x.  C
) ) ) ) )  e.  CC )
12185, 81addcld 7967 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( A ^
2 )  +  ( 2  x.  ( A  x.  B ) ) )  e.  CC )
122121, 91, 118addsubassd 8278 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B
) ) )  +  ( B ^ 2 ) )  -  (
( 2  x.  ( A  x.  C )
)  +  ( 2  x.  ( B  x.  C ) ) ) )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( ( B ^ 2 )  -  ( ( 2  x.  ( A  x.  C
) )  +  ( 2  x.  ( B  x.  C ) ) ) ) ) )
12385, 81, 119add32d 8115 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  +  ( ( B ^ 2 )  -  ( ( 2  x.  ( A  x.  C ) )  +  ( 2  x.  ( B  x.  C
) ) ) ) )  =  ( ( ( A ^ 2 )  +  ( ( B ^ 2 )  -  ( ( 2  x.  ( A  x.  C ) )  +  ( 2  x.  ( B  x.  C )
) ) ) )  +  ( 2  x.  ( A  x.  B
) ) ) )
124122, 123eqtrd 2210 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B
) ) )  +  ( B ^ 2 ) )  -  (
( 2  x.  ( A  x.  C )
)  +  ( 2  x.  ( B  x.  C ) ) ) )  =  ( ( ( A ^ 2 )  +  ( ( B ^ 2 )  -  ( ( 2  x.  ( A  x.  C ) )  +  ( 2  x.  ( B  x.  C )
) ) ) )  +  ( 2  x.  ( A  x.  B
) ) ) )
125120, 81, 124comraddd 8104 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B
) ) )  +  ( B ^ 2 ) )  -  (
( 2  x.  ( A  x.  C )
)  +  ( 2  x.  ( B  x.  C ) ) ) )  =  ( ( 2  x.  ( A  x.  B ) )  +  ( ( A ^ 2 )  +  ( ( B ^
2 )  -  (
( 2  x.  ( A  x.  C )
)  +  ( 2  x.  ( B  x.  C ) ) ) ) ) ) )
126116, 117, 1253eqtr4d 2220 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) )  +  ( ( 2  x.  ( A  x.  B )
)  +  ( ( B ^ 2 )  -  ( 2  x.  ( B  x.  C
) ) ) ) )  =  ( ( ( ( A ^
2 )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^ 2 ) )  -  ( ( 2  x.  ( A  x.  C ) )  +  ( 2  x.  ( B  x.  C )
) ) ) )
127126oveq1d 5884 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) )  +  ( ( 2  x.  ( A  x.  B
) )  +  ( ( B ^ 2 )  -  ( 2  x.  ( B  x.  C ) ) ) ) )  +  ( C ^ 2 ) )  =  ( ( ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  +  ( B ^ 2 ) )  -  ( ( 2  x.  ( A  x.  C ) )  +  ( 2  x.  ( B  x.  C
) ) ) )  +  ( C ^
2 ) ) )
128108, 127eqtrd 2210 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) )  +  ( C ^
2 ) )  +  ( 2  x.  ( A  x.  B )
) )  +  ( ( B ^ 2 )  -  ( 2  x.  ( B  x.  C ) ) ) )  =  ( ( ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  +  ( B ^ 2 ) )  -  ( ( 2  x.  ( A  x.  C ) )  +  ( 2  x.  ( B  x.  C
) ) ) )  +  ( C ^
2 ) ) )
129128oveq2d 5885 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( C ^
2 )  +  ( ( ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C
) ) )  +  ( C ^ 2 ) )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( ( B ^ 2 )  -  ( 2  x.  ( B  x.  C
) ) ) ) )  =  ( ( C ^ 2 )  +  ( ( ( ( ( A ^
2 )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^ 2 ) )  -  ( ( 2  x.  ( A  x.  C ) )  +  ( 2  x.  ( B  x.  C )
) ) )  +  ( C ^ 2 ) ) ) )
13099, 129eqtrd 2210 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) )  +  ( C ^
2 ) )  +  ( ( ( B ^ 2 )  -  ( 2  x.  ( B  x.  C )
) )  +  ( C ^ 2 ) ) )  +  ( 2  x.  ( A  x.  B ) ) )  =  ( ( C ^ 2 )  +  ( ( ( ( ( A ^
2 )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^ 2 ) )  -  ( ( 2  x.  ( A  x.  C ) )  +  ( 2  x.  ( B  x.  C )
) ) )  +  ( C ^ 2 ) ) ) )
131 binom2sub 10619 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  C ) ^ 2 )  =  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) )  +  ( C ^
2 ) ) )
1328, 9, 131syl2anc 411 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( A  -  C ) ^ 2 )  =  ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C ) ) )  +  ( C ^
2 ) ) )
133 binom2sub 10619 . . . . . . . . . . 11  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( ( B  -  C ) ^ 2 )  =  ( ( ( B ^ 2 )  -  ( 2  x.  ( B  x.  C ) ) )  +  ( C ^
2 ) ) )
13413, 9, 133syl2anc 411 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( B  -  C ) ^ 2 )  =  ( ( ( B ^ 2 )  -  ( 2  x.  ( B  x.  C ) ) )  +  ( C ^
2 ) ) )
135132, 134oveq12d 5887 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A  -  C ) ^
2 )  +  ( ( B  -  C
) ^ 2 ) )  =  ( ( ( ( A ^
2 )  -  (
2  x.  ( A  x.  C ) ) )  +  ( C ^ 2 ) )  +  ( ( ( B ^ 2 )  -  ( 2  x.  ( B  x.  C
) ) )  +  ( C ^ 2 ) ) ) )
136135oveq1d 5884 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( A  -  C ) ^ 2 )  +  ( ( B  -  C ) ^ 2 ) )  +  ( 2  x.  ( A  x.  B ) ) )  =  ( ( ( ( ( A ^ 2 )  -  ( 2  x.  ( A  x.  C )
) )  +  ( C ^ 2 ) )  +  ( ( ( B ^ 2 )  -  ( 2  x.  ( B  x.  C ) ) )  +  ( C ^
2 ) ) )  +  ( 2  x.  ( A  x.  B
) ) ) )
137 binom2sub 10619 . . . . . . . . . . 11  |-  ( ( ( A  +  B
)  e.  CC  /\  C  e.  CC )  ->  ( ( ( A  +  B )  -  C ) ^ 2 )  =  ( ( ( ( A  +  B ) ^ 2 )  -  ( 2  x.  ( ( A  +  B )  x.  C ) ) )  +  ( C ^
2 ) ) )
13821, 9, 137syl2anc 411 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A  +  B )  -  C ) ^ 2 )  =  ( ( ( ( A  +  B ) ^ 2 )  -  ( 2  x.  ( ( A  +  B )  x.  C ) ) )  +  ( C ^
2 ) ) )
139 binom2 10617 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) ) )
1408, 13, 139syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( A  +  B ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) ) )
14152oveq2d 5885 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( 2  x.  (
( A  +  B
)  x.  C ) )  =  ( 2  x.  ( ( A  x.  C )  +  ( B  x.  C
) ) ) )
14269, 36, 37adddid 7972 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( 2  x.  (
( A  x.  C
)  +  ( B  x.  C ) ) )  =  ( ( 2  x.  ( A  x.  C ) )  +  ( 2  x.  ( B  x.  C
) ) ) )
143141, 142eqtrd 2210 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( 2  x.  (
( A  +  B
)  x.  C ) )  =  ( ( 2  x.  ( A  x.  C ) )  +  ( 2  x.  ( B  x.  C
) ) ) )
144140, 143oveq12d 5887 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A  +  B ) ^
2 )  -  (
2  x.  ( ( A  +  B )  x.  C ) ) )  =  ( ( ( ( A ^
2 )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^ 2 ) )  -  ( ( 2  x.  ( A  x.  C ) )  +  ( 2  x.  ( B  x.  C )
) ) ) )
145144oveq1d 5884 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( A  +  B ) ^ 2 )  -  ( 2  x.  (
( A  +  B
)  x.  C ) ) )  +  ( C ^ 2 ) )  =  ( ( ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  +  ( B ^ 2 ) )  -  ( ( 2  x.  ( A  x.  C ) )  +  ( 2  x.  ( B  x.  C
) ) ) )  +  ( C ^
2 ) ) )
146138, 145eqtrd 2210 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A  +  B )  -  C ) ^ 2 )  =  ( ( ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  +  ( B ^ 2 ) )  -  ( ( 2  x.  ( A  x.  C ) )  +  ( 2  x.  ( B  x.  C
) ) ) )  +  ( C ^
2 ) ) )
147146oveq2d 5885 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( C ^
2 )  +  ( ( ( A  +  B )  -  C
) ^ 2 ) )  =  ( ( C ^ 2 )  +  ( ( ( ( ( A ^
2 )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^ 2 ) )  -  ( ( 2  x.  ( A  x.  C ) )  +  ( 2  x.  ( B  x.  C )
) ) )  +  ( C ^ 2 ) ) ) )
148130, 136, 1473eqtr4d 2220 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( A  -  C ) ^ 2 )  +  ( ( B  -  C ) ^ 2 ) )  +  ( 2  x.  ( A  x.  B ) ) )  =  ( ( C ^ 2 )  +  ( ( ( A  +  B )  -  C ) ^
2 ) ) )
149148oveq1d 5884 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( ( A  -  C
) ^ 2 )  +  ( ( B  -  C ) ^
2 ) )  +  ( 2  x.  ( A  x.  B )
) )  +  ( 2  x.  ( C  x.  ( abs `  (
( A  +  B
)  -  C ) ) ) ) )  =  ( ( ( C ^ 2 )  +  ( ( ( A  +  B )  -  C ) ^
2 ) )  +  ( 2  x.  ( C  x.  ( abs `  ( ( A  +  B )  -  C
) ) ) ) ) )
15084, 149breqtrd 4026 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( A  -  C ) ^ 2 )  +  ( 2  x.  (
( abs `  ( A  -  C )
)  x.  ( abs `  ( B  -  C
) ) ) ) )  +  ( ( B  -  C ) ^ 2 ) )  <_  ( ( ( C ^ 2 )  +  ( ( ( A  +  B )  -  C ) ^
2 ) )  +  ( 2  x.  ( C  x.  ( abs `  ( ( A  +  B )  -  C
) ) ) ) ) )
15122sqcld 10637 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A  +  B )  -  C ) ^ 2 )  e.  CC )
15288, 151, 82add32d 8115 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( C ^ 2 )  +  ( ( ( A  +  B )  -  C ) ^ 2 ) )  +  ( 2  x.  ( C  x.  ( abs `  (
( A  +  B
)  -  C ) ) ) ) )  =  ( ( ( C ^ 2 )  +  ( 2  x.  ( C  x.  ( abs `  ( ( A  +  B )  -  C ) ) ) ) )  +  ( ( ( A  +  B )  -  C
) ^ 2 ) ) )
153150, 152breqtrd 4026 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( A  -  C ) ^ 2 )  +  ( 2  x.  (
( abs `  ( A  -  C )
)  x.  ( abs `  ( B  -  C
) ) ) ) )  +  ( ( B  -  C ) ^ 2 ) )  <_  ( ( ( C ^ 2 )  +  ( 2  x.  ( C  x.  ( abs `  ( ( A  +  B )  -  C ) ) ) ) )  +  ( ( ( A  +  B )  -  C
) ^ 2 ) ) )
154 absresq 11071 . . . . . . 7  |-  ( ( A  -  C )  e.  RR  ->  (
( abs `  ( A  -  C )
) ^ 2 )  =  ( ( A  -  C ) ^
2 ) )
1554, 154syl 14 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( abs `  ( A  -  C )
) ^ 2 )  =  ( ( A  -  C ) ^
2 ) )
156155oveq1d 5884 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( abs `  ( A  -  C
) ) ^ 2 )  +  ( 2  x.  ( ( abs `  ( A  -  C
) )  x.  ( abs `  ( B  -  C ) ) ) ) )  =  ( ( ( A  -  C ) ^ 2 )  +  ( 2  x.  ( ( abs `  ( A  -  C
) )  x.  ( abs `  ( B  -  C ) ) ) ) ) )
157 absresq 11071 . . . . . 6  |-  ( ( B  -  C )  e.  RR  ->  (
( abs `  ( B  -  C )
) ^ 2 )  =  ( ( B  -  C ) ^
2 ) )
15828, 157syl 14 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( abs `  ( B  -  C )
) ^ 2 )  =  ( ( B  -  C ) ^
2 ) )
159156, 158oveq12d 5887 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( abs `  ( A  -  C ) ) ^ 2 )  +  ( 2  x.  (
( abs `  ( A  -  C )
)  x.  ( abs `  ( B  -  C
) ) ) ) )  +  ( ( abs `  ( B  -  C ) ) ^ 2 ) )  =  ( ( ( ( A  -  C
) ^ 2 )  +  ( 2  x.  ( ( abs `  ( A  -  C )
)  x.  ( abs `  ( B  -  C
) ) ) ) )  +  ( ( B  -  C ) ^ 2 ) ) )
1601, 12readdcld 7977 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( A  +  B
)  e.  RR )
161160, 3resubcld 8328 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( A  +  B )  -  C
)  e.  RR )
162 absresq 11071 . . . . . 6  |-  ( ( ( A  +  B
)  -  C )  e.  RR  ->  (
( abs `  (
( A  +  B
)  -  C ) ) ^ 2 )  =  ( ( ( A  +  B )  -  C ) ^
2 ) )
163161, 162syl 14 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( abs `  (
( A  +  B
)  -  C ) ) ^ 2 )  =  ( ( ( A  +  B )  -  C ) ^
2 ) )
164163oveq2d 5885 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( C ^ 2 )  +  ( 2  x.  ( C  x.  ( abs `  ( ( A  +  B )  -  C
) ) ) ) )  +  ( ( abs `  ( ( A  +  B )  -  C ) ) ^ 2 ) )  =  ( ( ( C ^ 2 )  +  ( 2  x.  ( C  x.  ( abs `  ( ( A  +  B )  -  C ) ) ) ) )  +  ( ( ( A  +  B )  -  C
) ^ 2 ) ) )
165153, 159, 1643brtr4d 4032 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( abs `  ( A  -  C ) ) ^ 2 )  +  ( 2  x.  (
( abs `  ( A  -  C )
)  x.  ( abs `  ( B  -  C
) ) ) ) )  +  ( ( abs `  ( B  -  C ) ) ^ 2 ) )  <_  ( ( ( C ^ 2 )  +  ( 2  x.  ( C  x.  ( abs `  ( ( A  +  B )  -  C ) ) ) ) )  +  ( ( abs `  (
( A  +  B
)  -  C ) ) ^ 2 ) ) )
16611recnd 7976 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( abs `  ( A  -  C )
)  e.  CC )
16715recnd 7976 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( abs `  ( B  -  C )
)  e.  CC )
168 binom2 10617 . . . 4  |-  ( ( ( abs `  ( A  -  C )
)  e.  CC  /\  ( abs `  ( B  -  C ) )  e.  CC )  -> 
( ( ( abs `  ( A  -  C
) )  +  ( abs `  ( B  -  C ) ) ) ^ 2 )  =  ( ( ( ( abs `  ( A  -  C )
) ^ 2 )  +  ( 2  x.  ( ( abs `  ( A  -  C )
)  x.  ( abs `  ( B  -  C
) ) ) ) )  +  ( ( abs `  ( B  -  C ) ) ^ 2 ) ) )
169166, 167, 168syl2anc 411 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( abs `  ( A  -  C
) )  +  ( abs `  ( B  -  C ) ) ) ^ 2 )  =  ( ( ( ( abs `  ( A  -  C )
) ^ 2 )  +  ( 2  x.  ( ( abs `  ( A  -  C )
)  x.  ( abs `  ( B  -  C
) ) ) ) )  +  ( ( abs `  ( B  -  C ) ) ^ 2 ) ) )
170 binom2 10617 . . . 4  |-  ( ( C  e.  CC  /\  ( abs `  ( ( A  +  B )  -  C ) )  e.  CC )  -> 
( ( C  +  ( abs `  ( ( A  +  B )  -  C ) ) ) ^ 2 )  =  ( ( ( C ^ 2 )  +  ( 2  x.  ( C  x.  ( abs `  ( ( A  +  B )  -  C ) ) ) ) )  +  ( ( abs `  (
( A  +  B
)  -  C ) ) ^ 2 ) ) )
1719, 64, 170syl2anc 411 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( C  +  ( abs `  ( ( A  +  B )  -  C ) ) ) ^ 2 )  =  ( ( ( C ^ 2 )  +  ( 2  x.  ( C  x.  ( abs `  ( ( A  +  B )  -  C ) ) ) ) )  +  ( ( abs `  (
( A  +  B
)  -  C ) ) ^ 2 ) ) )
172165, 169, 1713brtr4d 4032 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( abs `  ( A  -  C
) )  +  ( abs `  ( B  -  C ) ) ) ^ 2 )  <_  ( ( C  +  ( abs `  (
( A  +  B
)  -  C ) ) ) ^ 2 ) )
17311, 15readdcld 7977 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( abs `  ( A  -  C )
)  +  ( abs `  ( B  -  C
) ) )  e.  RR )
1743, 23readdcld 7977 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( C  +  ( abs `  ( ( A  +  B )  -  C ) ) )  e.  RR )
17510absge0d 11177 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  0  <_  ( abs `  ( A  -  C
) ) )
17614absge0d 11177 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  0  <_  ( abs `  ( B  -  C
) ) )
17711, 15, 175, 176addge0d 8469 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  0  <_  ( ( abs `  ( A  -  C ) )  +  ( abs `  ( B  -  C )
) ) )
17822absge0d 11177 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  0  <_  ( abs `  ( ( A  +  B )  -  C
) ) )
1793, 23, 57, 178addge0d 8469 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  0  <_  ( C  +  ( abs `  (
( A  +  B
)  -  C ) ) ) )
180173, 174, 177, 179le2sqd 10671 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( abs `  ( A  -  C
) )  +  ( abs `  ( B  -  C ) ) )  <_  ( C  +  ( abs `  (
( A  +  B
)  -  C ) ) )  <->  ( (
( abs `  ( A  -  C )
)  +  ( abs `  ( B  -  C
) ) ) ^
2 )  <_  (
( C  +  ( abs `  ( ( A  +  B )  -  C ) ) ) ^ 2 ) ) )
181172, 180mpbird 167 1  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( abs `  ( A  -  C )
)  +  ( abs `  ( B  -  C
) ) )  <_ 
( C  +  ( abs `  ( ( A  +  B )  -  C ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4000   ` cfv 5212  (class class class)co 5869   CCcc 7800   RRcr 7801   0cc0 7802    + caddc 7805    x. cmul 7807    <_ cle 7983    - cmin 8118   2c2 8959   RR+crp 9640   ^cexp 10505   abscabs 10990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992
This theorem is referenced by:  bdtri  11232
  Copyright terms: Public domain W3C validator